1- Stream cipher : encrypts a digital data stream one bit or one byte at a time.

2-If the cryptographic keystream is random, then this cipher is unbreakable.

3- Block Cipher: a block of plaintext is treated as a whole and used to produce a ciphertext block of equal length.

4-Feistel proposed : an approximation to the ideal block cipher by utilizing the concept of a product cipher.

5-Substitutions: Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements

6-Permutation: A sequence of plaintext elements is replaced by a permutation of that sequence.

7-Diffusion: The statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext.

8-Confusion: Seeks to make the relationship between the statistics of the ciphertext and the value of the encryption key as complex as possible. 9-Data are encrypted in 64-bit blocks using a 56-bit key.

10-DES uses 8 S-boxes, each with a 6-bit input and a 4-bit output.

11-The combination of bits 1 and 6 of the input defines one of 4 rows.

12-the combination of bits 2 through 5 defines one of the 16 columns.

13-The 2 nd column of the table shows the intermediate 64-bit values at the end of each round for the two plaintexts.

14-It drops the parity bits (bits 8, 16, 24, 32, ..., 64) from the 64-bit key and permutes the rest of the bits according to the flowing Table.

Shifting.

Rounds	Shift
1.2.9.16	One bit
Others	Two bits

انتهينا من شابتر ٤

1-Random Numbers: A number of network security algorithms and protocols based on cryptography make use of random binary numbers.

2-These applications give rise to two distinct and not necessarily compatible requirements for a sequence of random numbers:

\ Randomness and Unpredictability/

3-Uniform distribution: The distribution of bits in the sequence should be uniform; that is, the frequency of occurrence of ones and zeros should be approximately equal.

4-Independence: No one subsequence in the sequence can be inferred from the others.

5-the resulting sequences will pass many tests of randomness and are referred to as:

pseudorandom numbers.

6-the source is often referred to as an : entropy source.

7-• Pseudorandom number generator: An algorithm that is used to produce an open-ended sequence of bits is referred to as a PRNG.

8-• Pseudorandom function (PRF): is used to produced a pseudorandom string of bits of some fixed length.

9- Typically the seed is generated by: TRNG

10-RC4: is used in the WiFi Protected Access (WPA) protocol that are part of the IEEE 802.11 wireless LAN standard.

11-LavaRnd is an open source project for creating truly random numbers using inexpensive cameras, open source code, and inexpensive hardware.

	Pseudorandom Number Generators	True Random Number Generators
Efficiency	Very efficient	Generally inefficient
Determinism	Deterministic	Nondeterministic
Periodicity	Periodic	Aperiodic

12-

ناهينا من شابتر 8

1-Key distribution

• How to have secure communications in general without having to trust a Key Distribution Center (KDC) with your key.

2-Digital signatures

• How to verify that a message comes intact from the claimed sender.

3-Public-key encryption is a general-purpose technique that has made symmetric encryption obsolete.

4-Plaintext.: The readable message or data that is fed into the algorithm as input.

.5-Encryption algorithm

Performs various transformations on the plaintext.

6-Public key.: Used for encryption or decryption.

7-Ciphertext :. The scrambled message produced as output.

8-Decryption algorithm.:

Accepts the ciphertext and the matching key and produces the original plaintext.

9-• Encryption/decryption: The sender encrypts a message with the recipient's public key .

10- • Digital signature: The sender "signs" a message with its private key .

11-• Key exchange: Two sides cooperate to exchange a session key .

12 Brute force: This involves trying all possible private keys.

13 Mathematical attacks: There are several approaches, all equivalent in effort to factoring the product of two primes.

14 Timing attacks: These depend on the running time of the decryption algorithm.

15 Hardware fault-based attack: This involves inducing hardware faults in the processor that is generating digital signatures.

16 Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm.

17-Constant exponentiation time: Ensure that all exponentiations take the same amount of time before returning a result .

18-Random delay: Better performance could be achieved by adding a random delay to the exponentiation algorithm to confuse the timing attack.

19-Blinding: Multiply the ciphertext by a random number before performing exponentiation.