Selected Questions

Choose the correct/best answer (only one answer for each question)

1) The followings are Operating system goals except

- A. Use the computer hardware in an efficient manner
- C. Execute user programs and make solving user problems easier
 - 2) A(n) is a software-generated interrupt caused either by an error or a user request
- A. API
- C. system call

- B. Input request
- D. pool
- E. Other:

E. Other:

B. Provide text processing support

D. Make the computer system convenient to use

3) When a user-level process wishes to call a function inside the kernel,

- A. it directly executes the desired function
- C. the OS changes it from user mode to kernel mode
- B. it causes an exception
- D. the OS changes it from **kernel mode** to **user mode**
- E. Other:

4) Multiprogramming

- A. is a method of memory allocation by which the program is subdivided into multiple programs
- C. allows multiple programs to reside in separate areas of the core at the same time
- B. consists of those programs that may be generated by a processor during the execution of a process
- D. is a method for allocating I/O resources to multiple programs
- E. Other:

5) Which of the following about parent-child process relation is NOT correct?

- A. Parent and children may share all resources
- C. Children cannot contain threads if parents don't contain threads
 - 6) Which of the following is NOT correct:
- A. Processes carry a large amount of state information
- C. Context switching between processes is slower than
- B. Children may share subset of parent's resources
- D. Parent and children may execute concurrently
- E. Other:
- compare to thread
- between threads
- B. Processes have separate address space and threads share their address space
- D. Process creation is faster than threads creation
- E. Other:

7) A situation in which random read/write access by multiple processes to the same shared data can result incorrect results.

- A. Critical section
- C. Bounded waiting

- B. Context switch
- D. Mutex
- E. Other:

Consider the following scenario:

- State 1: Process P1 acquires semaphore S by performing an wait() operation.
- State 2: Process P2 then arrives and attempts to acquire S.
- State 3: Process P3 then arrives and attempts to acquire S.
- State 4: Process P1 releases S by performing a signal() operation.

8) Which of the following could be true right after State 3 and right before State 4?

- A. P2 is running its critical section
- C. P3 is blocked on semaphore S

- B. P3 is running its critical section
- D. P1 is blocked on semaphore S
- E. Other:

Consider a program that contains the following two threads. The threads are running concurrently, and x initial

value is 0. Answer the following four questions

thread1(){	thread2(){
for (int i=0; i<5; i++) {	for (int j=0; j<5; j++) {
x = x + 1;	x = x + 2;
<pre>System.out.print(x + " ");</pre>	<pre>System.out.print(x + " ");</pre>
}	}
}	}

9) The variables i and j are allocated in

- A. Heap segment
- C. Data segment
 - 10) The variable x is allocated in
- A. Heap segment
- C. Data segment

- B. Process registers
- D. Thread registers
- E. Other:
- B. Process registers
- D. Thread registers
- E. Other:

11) The followings are possible outputs on the screen when i = 3 and j = 2 except

A. 12357

C. 13467

B. 12243

D. 24567

E. Other:

Check whether the following statements are True or False

	Statement	Т	F	
1)	Entering a system call involves changing from user mode to kernel mode .			
2)	When a user-level process wishes to call a function inside the kernel, it directly executes the desired function.			
3)	3) On a uniprocessor system, there is exactly one ready process at any point in time			
4)	CPU, memory, and disk are examples of resources that the OS must manage			
5)	When an I/O operation completes , the previously blocked process moves into the RUNNING state			
6)	Two processes reading from the same physical address will access the same contents			
7)	Threads that are part of the same process run in parallel on a uniprocessor system			
8)	Locks prevent the OS scheduler from performing I/O operations			
9)	A process is created only if it is forked from another process			
10)	Dispatching means removing a process from memory and storing it on disk then bringing it back in from the disk to continue execution when resources are available			

	•		to with the right answers. It is not found (10 points).	ou	can <u>use the</u>	<u> </u>			
A.	Demand Paging	G.		М.	mode bit	P F			
В.	Virtual/Logical	Н.	First-Fit	N.	Never	0 3			
C.	page fault	I.	Second-Fit	0.	2	1 12			
D.	MMU	J.	Best-Fit	P.	2 ⁿ	$\begin{array}{c c} 2 & 7 \\ \vdots & \vdots \end{array}$			
E.	Holes	K.	Worst-Fit	Q.	2 ^m	31 5			
F.	Lazy Swapper	L.	Zero or 1			ı			
1.	never swaps a page into memory unless page will be needed. Fig. 1								
2.	total memory space exists to satisfy a request, but it is not contiguous.								
3.	In OS concepts, the	v	iew separates the user/CPU view	w fro	om what is act	tually happening.			
4.	is fast-lookup hard	war	e cache that reduces the amount	of ti	me it takes to	perform address			
	translation.								
5.		are t	he four conditions that must ho	d fo	r a deadlock t	o occur.			
6.	Given the following free memory blocks, which are listed according to their order in memory, and P ₁ ,								
	a 2500-KB process. If al	loca	tion algorithm was applied, P1 v	voul	d reside in b2				
	[b1 : 23	800K	B; b2:2600KB; b3:2500KB; b	4:2	700KB]				
7.	For P ₁ above, if the system is t	ısing	g 512KB paging, then P1 needs a	a tota	al of p	ages, however, it			
	has KB of internal fragme	entat	ion.						
8.	In the best case, to allocate all I	P ₁ pa	ges in memory the minimum nu	ımbe	er of page-faul	lts that may occur			
	is								
9.	If the base register holds 500	and	the limit register is 300, then	an a	ttempt by the	e user to address			
	location 400								
10.	A computer system has 8 distin	nct r	esources, with 'n' processes com	peti	ng for them. I	Each process may			
	need at most 4 resources. The	e m	aximum value of 'n' for whic	h th	e system is §	guaranteed to be			
	deadlock-free is								
11.	In virtual memory, the		bit is used to reduce the number	er of	page transfers	S.			
12.	Appling SSTF scheduling algorithms	orith	m on the following track requ	ıests	in the disk	queue where the			
	read/write arm on 50 causes a t	otal-	-head-movement (# of cylinders)	of.	cylinders	•			
	Track request: 95, 119, 34, 123, 11								
13.	A crucial requirement for	is	s the ability to restart any instruc	tion	after a				

- **14.** Fig.1 above shows a part of a page table for a memory with a page size of 1024 locations. Each logical address is in the form [p, d], where p and d are the page number and offset, respectively. Considering that the memory allocation of processes begins from address 0 in physical memory, the physical address that the logical address [0, 514] maps to is
- **15.** For the memory in the previous question and the paging table shown in Fig.1, m is bits.

Solve the following problems

- 1. Assume that main memory is composed of three frames, and that a program requests pages in the following order: 1, 2, 1, 3, 1, 2, 4, 2, 1, 3, 4. Assume the main memory is initially empty.
 - A. Using FIFO replacement, how many page faults will occur?
 - B. Using Least Recently Used replacement, how many page faults will occur?
- 2. Consider a disk queue holding requests to the following cylinders in the listed order: 116, 22, 3, 11, 75, 185, 100, 87. Using the SCAN scheduling algorithm, what is the order that the requests are serviced, assuming the disk head is at cylinder 88 and moving upward/inward through the cylinders?