
HASHING*
PA R T 1

Revised Fall 2019

1
* Based on the material prepared by James Tam- Ghostbusters © Columbia Tri-Star

OBJECTIVES

Be able to:

 Define terms related to hashing, including: hash function, double
hashing, collision, collision resolution, mapping, perfect hash function,
load factor, cluster.

 Define how the following hashing techniques work:

 Open addressing with linear probing

 Open addressing with double hashing

 Chaining

 Hashing with buckets

2

SEARCH ALGORITHMS

Linear search:

 Best case efficiency: O(1)

Worse case efficiency: O(n)

Average case efficiency: O(n)

Works on sorted or unsorted data

Binary search:

 Efficiency (all cases): O (log n)

 Requires that the data is already sorted

3

Can we do better?

SEARCHING FOR INFORMATION: WHEN
SPEED IS ESSENTIAL

[0] Dr. Peter Venkman

[1] Dr. Raymond

Stantz

[2] Ms. Janine

Melnitz

[3] Dr. Egon Spengler

[4] Mr. Louis Tully

[5] Ms. Dana Barrett

[6] Mr. Walter Peck

[7] Mr. Winston

Zeddemore

:

Map 555-5555 to

a list element

STORING/SEARCHING FOR INFORMATION:
TERMINOLOGY

[0] Dr. Peter

Venkman

[1] Dr. Raymond

Stantz

[2] Ms. Janine

Melnitz

[3] Dr. Egon

Spengler

[4] Mr. Louis Tully

[5] Ms. Dana

Barrett

[6] Mr. Walter Peck

Hash table

555-5555

Key

Hash function

HASHING: MAPPING KEYS TO POSITIONS IN A
TABLE (STORING OR SEARCHING)

[0] Dr. Peter Venkman

[1] Dr. Raymond Stantz

[2] Ms. Jin Turing

[3] Dr. Egon Spengler

[4] Mr. Louis Tully

[5]

[6]

222-2222

210-9455

123-4567

888-8888

220-3532

666-6666

AN EXAMPLE OF HOW HASHING CAN BE DONE:
TAKE ONE

: : : :

[5555554] Dr. Raymond Stantz

[5555555] Ms. Janine Melnitz

[5555556] Dr. Egon Spengler

[5555557] Mr. Louis Tully

[5555558] Ms. Dana Barrett

[5555559] Mr. Walter Peck

[5555560] Mr. Winston Zeddemore

: : : :

Key = 555-5555

Perfect hash function: Each key (e.g.,

phone number) maps to a unique list

entry (7 digit value)

O(1) search times but yields many

empty elements

Key = 555-5554

Key = 555-5556

: : :

AN EXAMPLE OF HOW HASHING CAN BE DONE:
TAKE TWO

: : : :

[5554] Dr. Raymond Stantz

[5555] Ms. Janine Melnitz

[5556] Dr. Egon Spengler

[5557] Mr. Louis Tully

[5558] Ms. Dana Barrett

[5559] Mr. Walter Peck

[5560] Mr. Winston Zeddemore

: : : :

In reality, even if the number of

keys = number of array elements,

multiple keys may be mapped to

the same list element

We call it collision!

Hash function

Key = 555-5555

Key = 210-9455

Collision At 5555

COLLISION

•Two keys mapping to the same location in the hash table is called “Collision”

•Collisions can be reduced with a selection of a good hash function

•But it is not possible to avoid collisions altogether, unless we find a perfect

hash function

•Perfect Hash Function

• A hash function that maps every key to

a unique location in the hash table

•Which is hard to do! Because:

 All of the keys are not known in advance

 e.g., flight numbers mapping to actual flights

 Only a small percentage of the possible key combinations are used.

 e.g., a company with 500 employees would not create a hash table

mapped to the 1 billion combinations of SIN numbers

9

EXAMPLE HASH FUNCTIONS

Selecting digits

Folding

Modular arithmetic

Converting characters to integers

10

EXAMPLE HASH FUNCTION: SELECTING
DIGITS

Select a portion of the key to use as the
index into the hash table

Works only for keys that are positive
integers.

Pro:

 The mapping of a key to an index is quick.

Con:

 It usually does not evenly distribute items through the
hash table (may lead to many collisions or clustering
around certain parts of the hash table).

403-210-9455

Hash function:

Select the even

position digits

starting with the 4th

digit

:

[2045]

[2046]

[2047]

[2048]

[2049]

:

EXAMPLE HASH FUNCTION: FOLDING

An improvement of the previous method because the entire number is
used (folded into the index)

Example 1:

12

403-210-9455

Hash function:

Sum all the

digits to get the

index 33

:

[33]

[34]

[35]

[36]

[37]

:

EXAMPLE HASH FUNCTION: FOLDING

Analysis of the example:

 Range of possible keys is limited to the number of digits of the key.

1 digit

key

0

1

:

9

Index from

0 - 9

2 digit

key

00

11

:

99

Index from

0 - 18

3digit

key

000

001

:

999

Index from

0 - 27

EXAMPLE HASH FUNCTION: FOLDING

To increase the size of the hash table (and increase the range of
possible values generated by the hash function) groups of numbers
can be added instead of individual numbers.

Example 2:

14

403-210-9455

Hash function: Key of

4032109455 maps to an

index of 600

:

[600]

[601]

[602]

[603]

:

4 + 032 + 109 + 455 = 600

EXAMPLE HASH FUNCTION: FOLDING

Other examples of hashing algorithms that employ folding could
combine selecting certain digits to be “folded” into a key e.g., sum
only the odd positioned digits.

Other mathematical/bitwise operations could be employed e.g.,
multiplying digits together, bit shifting or bit rotating the numerical
values.

The quality of the hash function using folding will vary.

15

EXAMPLE HASH FUNCTION: MODULAR
ARITHMETIC

16

The index = (key) modulo (table size)

Example:

1250 Hash function:

1250 modulo

100 = 50

[0]

:

[50]

[51]

:

[99]

EXAMPLE HASH FUNCTION: MODULAR
ARITHMETIC

The index = (key) modulo (table size)

 In Java the modulo operator is “%”.

To ensure an even distribution of keys to the different parts of the
table, the table size should be prime number (e.g., 101)

17

Why?!

RATIONALE

If we are adding numbers a1, a2, a3 … a4 to a
table of size m

 All values will be hashed into multiples of

gcd(a1, a2, a3 … a4 ,m)

 For example, if we are adding 64, 100, 128,
200, 300, 400, 500 to a table of size 8, all
values will be hashed to 0 or 4

gcd(64,100,128,200,300,400,500, 8) = 4

 When m is a prime gcd(a1, a2, a3 … a4 ,m) = 1,
all values will be hashed to anywhere

gcd(64,100,128,200,300,400,500,7) = 1

unless gcd(a1, a2, a3 … a4) = m, which is rare.

EXAMPLE HASH FUNCTION: CONVERTING
CHARACTERS TO INTEGERS

If the search key is a string of characters, computing the index could
be a two step process:

 Convert the characters to an integer value e.g., Unicode

 Apply one of the previous hash functions to the integer values

Note: To avoid having anagrams (e.g., “NOTE” and “TONE”) yielding
the same integer value concatenate rather than add the results.

 TONE: 84 79 78 69 = 84797869

 NOTE: 78 79 84 69 = 78798469

19

‘T’ ‘O’ ‘N’ ‘E’

84 79 78 69

Character key:

Integer value:

OTHER
METHODS

Truncation:

 e.g. 123456789 map to a table of 1000 addresses
by picking the last 3 digits of the key: H(IDNum) =
IDNum % 1000 = hash value

Squaring:

 Square the key and then truncate

Radix conversion:

 e.g. 1 2 3 4 treat it to be base 11, truncate if
necessary.

CHARACTERISTICS OF A GOOD HASH
FUNCTION

It should be as uncomplicated as possible and fast to compute e.g., a
single mathematical or bitwise operation.

It should scatter the data evenly throughout the hash table – collisions
are unavoidable except for the case of perfect hashing but they
should be minimized.

 The calculation of the index should involve the entire search key.

 If the hash function uses modulo arithmetic then the base should be
prime

 e.g., index = key MODULO <base>

21

COLLISION RESOLUTION TECHNIQUES

Open hashing/Separate chaining

 Restructuring addressing to the hash table: Open hashing/closed
addressing

 Separate (external) chaining

 Buckets

Closed hashing/Open addressing

 Linear probing

 Quadratic probing

 Double hashing using key-dependent increments

 Increasing the size of the hash table: rehashing

22

CLOSED HASHING / OPEN ADDRESSING

When collisions occur, find a new table entry to make the insertion.

Each table entry can only store one key.

Index Key

Collision

Closed hashing:

Can’t look outside the

table for new places

to insert hashed keys.

Closed Hashing: all keys are stored in the hash table itself

without the use of linked lists. AKA Open Addressing;

allocation within the hash table is open when collision

occurs

CLOSED HASHING / OPEN ADDRESSING

When collisions occur, find a new table entry to make the insertion.

Each table entry can only store one key.

Index Key

Collision

Open addressing: When a collision

occurs, the other addresses in the

table are “opened up” as possible

locations to hash to.

[1]

[2]

[3]

OPEN HASHING / CLOSED ADDRESSING

When a collision occurs, accommodate the addition key by
adding additional keys at the same location in the table.

Each table entry can only store multiple keys.

25

Index Key

Collision

Open up a table element

when hashing: Multiple keys

can be hashed and stored here

Open Hashing: keys are stored in linked

lists attached to cells of a hash table. AKA

Separate Chaining because another

separate list is chained to hash table cells

OPEN HASHING / CLOSED ADDRESSING

When a collision occurs, accommodate the addition key by
adding additional keys at the same location in the table.

Each table entry can only store multiple keys.

26

Index Key

Collision

Closed addressing: The

remaining addresses are

“closed” off when collisions

occur.

OPEN HASHING/SEPARATE CHAINING

Change the structure of the hash table so that if collisions occur, each
location in the hash table can accommodate multiple keys.

 The entries of the hash table are pointers/references to lists.

 A new item is inserted to the list if it hashes to the location.

Advantages:

 Better space utilization for large items.

 Simple collision handling: searching linked list.

 Overflow: we can store more items than the hash table size.

 Deletion is quick and easy: deletion from the linked list.

Implementation:

 Buckets(arrays)

 Linked lists

27

SEPARATE CHINNING- BUCKETS

Each hash table entry is a 1-D array

[0]

[1]

[2]

[3]

AB

PQ

MN

NB

[0] [1] [2] [3]

[0] [1] [2] [3]

[0] [1] [2] [3]

[0] [1] [2] [3]

AB PQ

MN NB
• Issue: How to choose the optimal sized bucket:

• Too small: The problem with collisions has only

been postponed.

• Too large: Memory is wasted.

• Consequence: Implementing table entries as buckets

is seldom done in actual practice.

SEPARATE CHAINING- LINKED LISTS

Each table entry is a reference to a linked list.

29

[0]

[1]

[2]

[3]

AB

PQ

MN

NB

AB

MN

PQ

NB

SEPARATE CHAINING- EXAMPLE

All keys that map to the same
table location are kept in a linked list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
insert 10, 22, 86, 12, 42
with h(x) = x % 10

30

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

SEPARATE CHAINING

31

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 / 0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

22 /

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

22 /

86 /

Insert 10, 22, 86, 12, 42 with h(x) = x % 10

SEPARATE CHAINING

32

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

12

86 /

22 /

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

42

86 /

12 22 /

Insert 10, 22, 86, 12, 42 with h(x) = x % 10

THOUGHTS ON SEPARATE CHAINING

Separate chaining does not use all the space in the table

Worst-case time for search/find?

 Linear

 But only with really bad luck or bad hash function

 Not worth avoiding (e.g., with balanced trees at each bucket)

 Keep small number of items in each bucket

 Overhead of tree balancing not worthwhile for small n

Beyond asymptotic complexity, some "data-structure engineering" can

improve constant factors

 Linked list, array, or a hybrid

 Insert at end or beginning of list

 Sorting the lists gains and loses performance

 Splay-like: Always move item to front of list

33

NEXT

Closed hashing- open addressing.

34

