
FCFS Scheduling
Lab 09

1

2

ًاملع اندزو ،،،انتملع امب انعفناو ،،،انعفنی ام انملع مھللا

Lab Objective
• To practice the FCFS scheduling.

3

Quick Refresh
• Turnaround time:
– the time of submission to the time of

completion.
• Waiting time:
– amount of time a process has been waiting in

the ready queue.
• Response time:
– amount of time it takes from when a request

was submitted until the first response is
produces.

4

FCFS Scheduling
• Assigns the CPU based on the order of

requests
– Nonpreemptive: A process keeps running on

the CPU until it's blocked or terminated.

+ Simple
- Short jobs can get stuck behind long jobs
(convoy effect)

5

Procedure
• Write a C++ program that simulate the FCFS

CPU scheduling policy.
• Assume that you have only three processes.
• The inputs to the program are the arrival

time and burst time of each process.
• The output of the program are the response

time, waiting time, and turnaround time for
each of the three process.

• Extra: Calculate the average waiting time

6

Steps
1. Get values from the user.
2. Sort the processes based on the arrival

time.
3. Calculate the start and end time for each

process.
4. Calculate response, waiting, turnaround

times for each process.
5. Display the results.

7

Procedure (Cont.)
• The following is a sample run of the program

(the underlined numbers are entered by the
user who runs the program):

8

9

#include <iostream>
using namespace std;
int main()
{

float n,tempb,tempa,tempp,tw,average,gap,arrive[3],burst[3],
process[3],start[3],finish[3],waiting[3],response[3],
turnaround[3];

int i,j;

////////////// Get values from User///////////
for(i=0;i<3;i++)
{ n=i+1;

process[i]=n;
cout<<"what is p"<<n<<" arrival time\t";
cin>>arrive[i];
cout<<" what is p"<<n<<" burst time\t";
cin>>burst[i];

}//end for

10

//////////Sort process based on arrival time//////////////

for(i=0;i<2;i++)
for(j=i+1;j<3;j++)
{

if(arrive[j]<arrive[i])
{

tempa=arrive[i];
arrive[i]=arrive[j];
arrive[j]=tempa;
tempb=burst[i];
burst[i]=burst[j];
burst[j]=tempb;
tempp=process[i];
process[i]=process[j];
process[j]=tempp;

}//end if
}//end for

11

///////////////calculate start and finish time ////////////////
start[0]=arrive[0];
finish[0]=arrive[0]+burst[0];
for(i=1;i<3;i++)
{

gap=0;
if(arrive[i]>finish[i-1])
{

gap=arrive[i]-finish[i-1];
start[i]=finish[i-1]+gap;

}//end if
else

start[i]=finish[i-1];

finish[i]=start[i]+burst[i];
}//end for

12

///calculate response, waiting, turnaround times for each process///
tw=0;
for(i=0;i<3;i++)
{ response[i]=……………………;

waiting[i]=………………………;
turnaround[i]=……………………………;
tw+=waiting[i];

}//end for

average=………………………..;

/////////////////Display results////////////////////
for(i=0;i<3;i++)
{

cout<<"process Number"<<process[i]<<'\n'<<"arrive at
"<<arrive[i]<<'\n'<<"waiting Time = "<<waiting[i]<<'\n'<<"response
Time= "<<response[i]<<'\n'<<"Turnaround Time =
"<<turnaround[i]<<'\n’;

}
cout<<"Total waiting time = "<<tw;
cout<<"\n \n Average waiting time = "<<average;
cout<<"\n\n\t\t\t--------*******FCFS ********---------\n";
return(0);

}//end main

13

