
QueueQueue

2

––

a queue data structurea queue data structure



Definition: Queue is a “first in first out”

data structure. Which

means elements inserted are popped in the same order.


Thus what goes first will come out first.



It is called a FIFO

data structure: First-In, First-Out

» Insert A: insert A in the Queue
» Insert B: Insert B in the Queue
» Remove: Remove A
» Remove : Remove B

enqueue

dequeue

3

––

a queue data structurea queue data structure



A queue is similar to a list but adds items only to the rear

 of the list and removes them only from the front



It is called a FIFO

data structure: First-In, First-Out



Analogy: a line of people at a movie ticket window

enqueue dequeue

first item in,
first item out

last item in,
last item out

4

QueuesQueues



We can define the operations for a queue
•

enqueue

-

add an item to the rear of the queue
•

dequeue

(or serve) -

remove an item from the front of the queue
•

empty -

returns true if the queue is empty



As with our linked list example, by storing generic Object
references, any object

can be stored in the queue



Queues often are helpful in simulations or any situation in
which items get “backed up”

while awaiting processing

 (Jobs waiting their turn to be processed.)
Like customers standing in a check-out line in a store, the first

customer in is the first customer served.

The Queue ADTThe Queue ADT



Like a stack, a

queue is also a list. However, with a queue,

insertion is done at one end, while deletion is performed at
the other end.



Another form of restricted list
•

Insertion is done at one end, whereas deletion is performed at the
other end



Basic operations:
•

enqueue: insert an element at the rear of the list
•

dequeue: delete the element at the front of the list



First-in First-out (FIFO) list

EnqueueEnqueue

and and DequeueDequeue


Primary queue operations: Enqueue

and Dequeue



Like check-out lines in a store, a queue has a front

and a

rear.


Enqueue
•

Insert an element at the rear

of the queue


Dequeue
•

Remove an element from the front

of the queue

Insert
(Enqueue)

Remove
(Dequeue) rearfront

Operation in the QueueOperation in the Queue

Operations on QueueOperations on Queue



isSize():

Return the number of elements in the queue at

any time


isempty(): Return a Boolean identification of the queue



Empty (0,1) 1 means true there is no element in the
Queue , 0 means false the Queue has elements





Front():

return the front element of the Queue without

removing it, if the queue is empty and error is return

Implementation of QueueImplementation of Queue



Just as stacks

can be implemented as arrays or linked

lists, so with queues.


(1) if it use array

there are limited number of elements to

be inserted


(2) if it use linked list

there in no such limited number





Dynamic queues

have the same advantages over static

queues

as dynamic stacks

have over static stacks

Queue Implementation of ArrayQueue Implementation of Array



There are several different algorithms to implement
Enqueue

and Dequeue



Naïve way
•

When enqueuing, the front index

is always fixed and the rear
index

moves forward in the array.

front

rear

Enqueue(3)

3

front

rear

Enqueue(6)

3 6

front

rear

Enqueue(9)

3 6 9

Queue Implementation of ArrayQueue Implementation of Array



Naïve way
•

When enqueuing, the front index

is always fixed and the rear
index

moves forward in the array.
•

When dequeuing, the element at the front the queue is
removed. Move all the elements after it by one position.
(Inefficient!!!)

Dequeue()
front

rear

6 9

Dequeue() Dequeue()

front

rear

9

rear = -1

front

Selective Removal OperationSelective Removal Operation

1

2
.
.

x
.
.

n

Looks like other data structure as array

Remove/Insert an at index x

Not possible

Queue Operations implemented by
Array of size 3

Size()=0

Isempty()=1

front()=Null
rare

enqueue(5)

Size()=1
Isempty()=0
front()=5

5
rare

Size()=2
Isempty()=0
front()=6

9

Dequeue() Size()=2
Isempty()=0
front()=9

6

head
head

5
6

rare

head

enqueue(6)

6

rare

head

rare

head

Cont. Queue Operations
Size()=2
Isempty()=0
front()=9

Enqueue (2)

Now the queue is full there is one
place is empty and the rare will not
return error, And it will go to the
first place again

Size()=3
Isempty()=0
front()=2

In that case rare and head point the same place as head and
this is the limitation in the queue when using array.

Now we can say the queue is empty when both rare and
head point to the same place, but when the both are equal
but the queue is full too, but the difference between both is
when size()=0, the queue is empty and when size()=max, the
q u e u e i s f u l l .

9

Rare

6 head
rare

2
6
9

head

Cont. Queue Operations
Size()=3
Isempty()=0
front()=2

Enqueue(5) overflow

Notice that , if we want to add
more element the size of the
queue is MAX, and we have to
call the Realloc() library function
to increase the space of the array

6
9
2
5

Size()=4
Isempty()=0
front()=5

In that case call all element and
the top element reserve the front

The drawback of this method is
the consuming time , and losing
t i m e a n d w a s t a g e o f s p a c e

There is other way to implement
t h e s t a c k u s i n g L i n k ed l i s t

2
6
9

head

rare

rare

Head

Queue Operations implemented by
linked list

enqueue(5)

Advantage:
No wastage of space

No upper limit size

Disadvantage
The cost of the node
creation

Push() and Pop()
take time as node
creation and deletion
take more list

Size()=0

Isempty()=1

Front()=Head= Null

Null6

head

enqueue6)

Null5

6
Size()=2

Isempty()=0

front()=6

head 5

Size()=1

Isempty()=0

front()=5

head
rare

rare

rare

Stack Operations implemented by
linked list

Enqueue((4))

Size()=3

Isempty()=0

front()=4

Null4

6

5

Deque()

Null4

6

5 Deleted

Size()=2

Isempty()=0

front()=4

head

rare

rare

head

	Queue
	– a queue data structure
	– a queue data structure
	Queues
	The Queue ADT
	Enqueue and Dequeue
	Operations on Queue
	Implementation of Queue
	Slide Number 9
	Queue Implementation of Array
	Queue Implementation of Array
	Selective Removal Operation
	Queue Operations implemented by Array of size 3
	Cont. Queue Operations
	Cont. Queue Operations
	Queue Operations implemented by linked list
	Stack Operations implemented by linked list
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

