Recursion

- Recursion is more than just a programming technique. It has two other uses in computer science and software engineering, namely:
- as a way of describing, defining, or specifying things.
- as a way of designing solutions to problems (divide and conquer).

Recursive definitions

- A recursive definition is one in which something is defined in terms of itself
- Almost every algorithm that requires looping can be defined iteratively or recursively
- All recursive definitions require two parts:
- Base case
- Recursive step
- The recursive step is the one that is defined in terms of itself
- The recursive step must always move closer to the base case
- Factorial

```
-n!=n * (n-1)!
int fact(int n) {
    if (n <= 1) return 1;
    else return n * fact(n-1);
    } // fact
```

- In general, we can define the factorial function in the following way:
$\operatorname{Factorial}(n)=\left[\begin{array}{ll}1 & \text { if } n=0 \\ n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 & \text { if } n>0\end{array}\right]$

$$
\begin{array}{lll}
1! & =1 & \text { Iterative } \\
2! & =1 \times 2=2 & \text { Definition } \\
3! & =1 \times 2 \times 3=6 & \\
4! & =1 \times 2 \times 3 \times 4=24 & \\
5! & =1 \times 2 \times 3 \times 4 \times 5=120 &
\end{array}
$$

Iteration vs. recursion

- Some things (e.g. reading from a file) are easier to implement iteratively
- Other things (e.g. mergesort) are easier to implement recursively
- Others are just as easy both ways
- It can be proved that two methods performing the same task, one implementing an iteration algorithm and one implementing a recursive version, are equivalent

Factorial (4)
Factorial $(5)=5 * 4 * 3 * 2 * 1$

Factorial $(4)=4 * 3 * 2 * 1$

> Factorial (2)

Factorial $(3)=3 * 2 * 1$
Factorial (1)
Factorial $(2)=2 * 1$
base ba يوڤف فيه النكرار

Factorial(1)=1

Breakdown

- Here, we see that we start at the top level, factorial(3), and simplify the problem into $3 \times$ factorial(2).
- Now, we have a slightly less complicated problem in factorial(2), and we simplify this problem into $2 \times$ factorial(1).

Breakdown

- We continue this process until we are able to reach a problem that has a known solution.
- In this case, that known solution is factorial(0)
$=1$.
- The functions then return in reverse order to complete the solution.

Breakdown

- This known solution is called the base case.
- Every recursive algorithm must have a base case to simplify to.
- Otherwise, the algorithm would run forever (or until the computer ran out of memory).

Iterative Algorithm

factorial(n) \{
i = 1
factN = 1
loop ($\mathrm{i}<=\mathrm{n}$)
factN $=$ factN * i
$\mathrm{i}=\mathrm{i}+1$
end loop
return factN

The iterative solution is very straightforward. We simply loop through all the integers between 1 and n and multiply them together.

Recursive Algorithm

factorial(n) \{
if $(\mathrm{n}=0)$
return 1
else

Note how much simpler the code for the recursive version of the algorithm is as compared with the iterative version \rightarrow return n *factorial(n-1) end if
we have eliminated the loop and implemented the algorithm with 1 'if' statement.

How Recursion Works

- When the function is finished, it needs to return to the function that called it.
- The calling function then 'wakes up' and continues processing.

How Recursion Works

- To do this we use a stack.
- Before a function is called, all relevant data is stored in a stackframe.
- This stackframe is then pushed onto the system stack.
- After the called function is finished, it simply pops the system stack to return to the original state.
- 1. Base cases:
- Always have at least one case that can be solved without using recursion.
- 2. Make progress:
- Any recursive call must make progress toward a base case.

Advantage and Limitations of

Recursion

- Recursive solutions can be easier to understañd and to describe than iterative solutions.
- Recursion works the best when the algorithm and/or data structure that is used naturally supports recursion.
- One such data structure is the tree (more to come).
- One such algorithm is the binary search algorithm that we discussed earlier in the course.

acci Numbers

$$
0,1,1,2,3,5,8,13,21 \ldots .
$$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610

ibonacci (0) =0
ibonacci $(1)=1$
Fibonacci $(x)=$ Fibonacci $(x-1)+$ Fibonac

4321

rn 0

=1)
rn 1
rn Fib $(x-1)+\operatorname{Fib}(x-2)$
$\operatorname{Fib}(7)=\operatorname{Fib}(6)$
$\mathrm{Fib}(6)=\mathrm{Fib}(5)$
$\mathrm{Fib}(5)=\mathrm{Fib}(4)+$
$\operatorname{Fib}(4)=\operatorname{Fib}(3)$

Fib (3) = Fib (2)
Fib (2) = Fib (1)
$\mathrm{Fib}(1)=1$

Fibonacci function:

- fibonacci(0) = 1
fibonacci(1) = 1
fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
[for $n>1$]
- This definition is a little different than the previous ones because It has two base cases, not just one; in fact, you can have as many as you like.
- In the recursive case, there are two recursive calls, not just one. There can be as many as you like.

Function Analysis for call fib(5)

Conclusion

- A recursive solution solves a problem by solving a smaller instance of the same problem.
- It solves this new problem by solving an even smaller instance of the same problem.
- Eventually, the new problem will be so small that its solution will be either obvious or known.
- This solution will lead to the solution of the original problem.

A binary tree is either empty, or it consists of a node part (an element) and two subtree parts. Each of the subtree parts are themselves binary trees.

Towers of Hanoi

- Move n (4) disks from pole A to pole C
- such that a disk is never put on a smaller disk

- Move n (4) disks from A to C
- Move n-1 (3) disks from A to B
- Move 1 disk from A to C
- Move n-1 (3) disks from B to C

Figure 2.19a and b
a) The initial state; b) move $n-1$ disks from A to C

Figure 2.19c and d
c) move one disk from A to B; d) move $n-1$ disks from C to B

Hanoi towers

```
public static void solveTowers(int count, char source,
                        char destination, char spare) {
    if (count == 1) {
    System.out.println("Move top disk from pole " + source +
                " to pole " + destination);
    }
    else {
    solveTowers(count-1, source, spare, destination); // X
    solveTowers(1, source, destination, spare); // Y
    solveTowers(count-1, spare, destination, source); // Z
    } // end if
} // end solveTowers
```

Figure 2.21a Box trace of solveTowers(3, 'A', 'B', 'C')

Figure 2.21b Box trace of solveTowers(3, 'A', 'B', 'C')

Figure 2.21c Box trace of solveTowers(3, 'A', 'B', 'C')

Figure 2.21d Box trace of solveTowers(3, 'A', 'B', 'C')

Figure 2.21e Box trace of solveTowers(3, 'A', 'B', 'C')

Cost of Hanoi Towers

- How many moves is necessary to solve Hanoi Towers problem for N disks?
- $\operatorname{moves}(1)=1$
- moves(N) $=$ moves(N-1) $+\operatorname{moves}(1)+\operatorname{moves}(\mathrm{N}-1)$
- i.e.
$\operatorname{moves}(\mathrm{N})=2 * \operatorname{moves}(\mathrm{~N}-1)+1$
- Guess solution and show it's correct with Mathematical Induction!

