
Recursion

Recursion is more than just a programming
technique. It has two other uses in computer
science and software engineering, namely:

as a way of describing, defining, or
specifying things.

as a way of designing solutions to problems
(divide and conquer).

Iterative
Definition

In general, we can define the factorial function in
the following way:

Recursion
Definition

Recursion

To see how the recursion works, let’s
break down the factorial function to solve
factorial(3)

Prof. Atlam2018
Stamp

Breakdown

Here, we see that we start at the top level,
factorial(3), and simplify the problem into
3 x factorial(2).

Now, we have a slightly less complicated
problem in factorial(2), and we simplify this
problem into 2 x factorial(1).

Breakdown

We continue this process until we are able to
reach a problem that has a known solution.

In this case, that known solution is factorial(0)
= 1.

The functions then return in reverse order to
complete the solution.

Breakdown

This known solution is called the base case.

Every recursive algorithm must have a base
case to simplify to.

Otherwise, the algorithm would run forever
(or until the computer ran out of memory).

Iterative Algorithm

factorial(n) {
i = 1
factN = 1
loop (i <= n)

factN = factN * i
i = i + 1

end loop
return factN

}

The iterative solution is
very straightforward.
We simply loop through
all the integers
between 1 and n and
multiply them together.

Recursive Algorithm

factorial(n) {
if (n = 0)

return 1
else

return n*factorial(n-1)
end if

}

Note how much simpler
the code for the recursive
version of the algorithm is
as compared with the
iterative version

we have eliminated the loop
and implemented the
algorithm with 1 ‘if’
statement.

How Recursion Works

When the function is finished, it needs to
return to the function that called it.

The calling function then ‘wakes up’ and
continues processing.

How Recursion Works

To do this we use a stack.

Before a function is called, all relevant data is
stored in a stackframe.

This stackframe is then pushed onto the system
stack.

After the called function is finished, it simply pops
the system stack to return to the original state.

Basic RecursionBasic Recursion

1. Base cases:

Always have at least one case that can be
solved without using recursion.

2. Make progress:

Any recursive call must make progress
toward a base case.

Advantage and Limitations of
Recursion

Recursive solutions can be easier to understand
and to describe than iterative solutions.

Recursion works the best when the algorithm
and/or data structure that is used naturally
supports recursion.

One such data structure is the tree (more to
come).

One such algorithm is the binary search algorithm
that we discussed earlier in the course.

Limitations of Recursion

Therefore,

Prof. Atlam2018
Stamp

Disadvantage of recursively

Recursion is based upon calling the same function
over and over, whereas iteration simply `jumps back'
to the beginning of the loop. A function call is often
more expensive than a jump.

Recursive algorithms have more overhead than
similar iterative algorithms

Because of the repeated method calls (storing and
removing data from call stack)

This may also cause a “stack overflow” when the
call stack gets full

Prof. Atlam2018
Stamp

Disadvantage of recursively

if the recursion is deep, say, factorial(1000),
we may run out of memory.

Because of this, it is usually best to develop
iterative algorithms when we are working with
large numbers.

Prof. Atlam2018
Stamp

Fibonacci function:

fibonacci(0) = 1

fibonacci(1) = 1

fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

[for n>1]

This definition is a little different than the
previous ones because It has two base cases,
not just one; in fact, you can have as many as
you like.

In the recursive case, there are two recursive
calls, not just one. There can be as many as you
like.

Function Analysis for call fib(5)

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(1) fib(0)fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(1)

1

1 1 1

1

0 0

0

1

12 1

3 2

5
public static int fib(int n)
if (n == 0 || n == 1)
return n

else
return fib(n-1) + fib(n-2)

Conclusion

A recursive solution solves a problem by solving a
smaller instance of the same problem.

It solves this new problem by solving an even smaller
instance of the same problem.

Eventually, the new problem will be so small that its
solution will be either obvious or known.

This solution will lead to the solution of the original
problem.

Towers of Hanoi

Move n (4) disks from pole A to pole C

such that a disk is never put on a smaller disk

AA BB CCAA BB CC

AA BB CC

Move n (4) disks from A to C

Move n-1 (3) disks from A to B

Move 1 disk from A to C

Move n-1 (3) disks from B to C

Figure 2.19a and bFigure 2.19a and b
a) The initial state; b) move n - 1 disks from A to C

Figure 2.19c and dFigure 2.19c and d
c) move one disk from A to B; d) move n - 1 disks from C to B

Hanoi towers

public static void solveTowers(int count, char source,
char destination, char spare) {

if (count == 1) {
System.out.println("Move top disk from pole " + source +

" to pole " + destination);
}
else {

solveTowers(count-1, source, spare, destination); // X
solveTowers(1, source, destination, spare); // Y
solveTowers(count-1, spare, destination, source); // Z

} // end if
} // end solveTowers

AA BB CC

AA BB CC

AA BB CC

Figure 2.21aFigure 2.21a
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

AA BB CC

Figure 2.21bFigure 2.21b
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

AA BB CC

AA BB CC

AA BB CC

AA BB CC

Figure 2.21cFigure 2.21c
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

AA BB CC

AA BB CC

AA BB CC

AA BB CC

Figure 2.21dFigure 2.21d
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

AA BB CC

Figure 2.21eFigure 2.21e
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

Cost of Hanoi Towers

How many moves is necessary to solve
Hanoi Towers problem for N disks?

moves(1) = 1

moves(N) = moves(N-1) + moves(1) + moves(N-1)

i.e.
moves(N) = 2*moves(N-1) + 1

Guess solution and show it’s correct with
Mathematical Induction!

Presenter
Presentation Notes
MI and recursion are closely related. MI can be used to prove that the number of operations of recursive method is equal to some value, and to prove its correctness. Recursion tree is often used to guess the number of operations.

	Recursion
	Slide Number 2
	Iterative Definition
	Iterative vs. Recursive
	Slide Number 5
	Recursion
	Breakdown
	Breakdown
	Breakdown
	Iterative Algorithm
	Recursive Algorithm
	How Recursion Works
	How Recursion Works
	Basic Recursion
	Advantage and Limitations of Recursion
	Limitations of Recursion
	Disadvantage of recursively
	Disadvantage of recursively
	Fibonacci function: �
	Function Analysis for call fib(5)
	Conclusion
	Slide Number 22
	Towers of Hanoi
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Hanoi towers
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Cost of Hanoi Towers

