Recursion

- Recursion is more than just a programming technique. It has two other uses in computer science and software engineering, namely:
- as a way of describing, defining, or specifying things.
- as a way of designing solutions to problems (divide and conquer).

Recursive definitions

- A recursive definition is one in which something is defined in terms of itself
- Almost every algorithm that requires looping can be defined iteratively or recursively
- All recursive definitions require two parts:
 - Base case
 - Recursive step
- The recursive step is the one that is defined in terms of itself
- The recursive step must always move closer to the base case

- Factorial
 - -n! = n * (n-1)!int fact(int n) { if $(n \ll 1)$ return 1; else return n * fact(n-1); } // fact

Recursion **Definition**

 In general, we can define the factorial function in the following way:

Factorial(n) = $\begin{vmatrix} 1 \\ n x (n - 1) x (n - 2) x ... x 3 x 2 x 1 \end{vmatrix}$ if n = 0if n > 0

- 1 Iterative 2! $= 1 \times 2 = 2$ 3 $= 1 \times 2 \times 3 = 6$ Definition $4! = 1 \times 2 \times 3 \times 4 = 24$ 5= 1 × 2 × 3 × 4 × 5 = 120

Iteration vs. recursion

- Some things (e.g. reading from a file) are easier to implement iteratively
- Other things (e.g. mergesort) are easier to implement recursively
- Others are just as easy both ways
- It can be proved that two methods performing the same task, one implementing an iteration algorithm and one implementing a recursive version, are equivalent

مضروب، Factorial

بزء يوقف فيه التكرار base

Factorial(1)=1

Breakdown

- Here, we see that we start at the top level, factorial(3), and simplify the problem into 3 x factorial(2).
- Now, we have a slightly less complicated problem in factorial(2), and we simplify this problem into 2 x factorial(1).

Breakdown

- We continue this process until we are able to reach a problem that has a known solution.
- In this case, that known solution is factorial(0)
 = 1.
- The functions then return in reverse order to complete the solution.

Breakdown

- This known solution is called the **base case**.
- Every recursive algorithm must have a base case to simplify to.
- Otherwise, the algorithm would run forever (or until the computer ran out of memory).

Iterative Algorithm

factorial(n) { i = 1 factN = 1loop (i $\leq n$) factN = factN * i i = i + 1end loop return factN

The iterative solution is very straightforward. We simply loop through all the integers between 1 and n and multiply them together.

Recursive Algorithm

factorial(n) { if (n = 0)return 1 else return n*factorial(n-1) end if

Note <u>how much simpler</u> <u>the code</u> for the recursive version of the algorithm is as compared with the iterative version \rightarrow al(n-1)

we have eliminated the loop and implemented the algorithm with 1 'if' statement.

How Recursion Works

• When the function is finished, it needs to return to the function that called it.

• The calling function then 'wakes up' and continues processing.

How Recursion Works

- To do this we use a stack.
- Before a function is called, all relevant data is stored in a *stackframe*.
- This stackframe is then pushed onto the system stack.
- After the called function is finished, it simply pops the system stack to return to the original state.

Basic Recursion

- 1. Base cases:
 - Always have at least one case that can be solved without using recursion.
- 2. Make progress:
 - Any recursive call must make progress toward a base case.

Advantage and Limitations of Recursion

- and
- Recursive solutions can be easier to understand: and to describe than iterative solutions.
- Recursion works the best when the algorithm and/or data structure that is used naturally supports recursion.
- One such data structure is the tree (more to come).
- One such algorithm is the binary search algorithm that we discussed earlier in the course.

acci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	

Fibonacci (0) =0 Fibonacci (1) = 1 Fibonacci (x) = Fibonacci (x-1) + Fibonacci **4 3 2 1**

rn 0 =1) rn 1

rn Fib(x-1) + Fib(x-2)

Fib (7) = Fib (6)	Н
Fib (6) = Fib (5)	
Fib (5) = Fib (4)	t
Fib (4) = Fib (3)	T
Fib (3) = Fib (2)	+
Fib (2) = Fib (1)	+
Fib(1)= 1	

= Fib (6) nFib (Eib (5) + rn 0 Fib (4) =1) Eib (4 Fib (3) rn 1 rn Fib(x-1) + Fib (x-2) Fib(O)

Fibonacci function:

- fibonacci(0) = 1
- fibonacci(1) = 1
- fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
- This definition is a little different than the previous ones because It has two base cases, not just one; in fact, you can have as many as you like.
- In the recursive case, there are two recursive calls, not just one. There can be as many as you like.

[for n>1]

Conclusion

- A recursive solution solves a problem by solving a smaller instance of the same problem.
- It solves this new problem by solving an even smaller instance of the same problem.
- Eventually, the new problem will be so small that its solution will be either obvious or known.
- This solution will lead to the solution of the original problem.

A *binary tree* is either empty, or it consists of a node part (an element) and two subtree parts. Each of the subtree parts are themselves binary trees.

Towers of Hanoi

- Move n (4) disks from pole A to pole C
- such that a disk is never put on a smaller disk

- Move n (4) disks from A to C
 - Move n-1 (3) disks from A to B
 - Move 1 disk from A to C
 - Move n-1 (3) disks from B to C

Figure 2.19c and d c) move one disk from A to B; d) move n - 1 disks from C to B

Hanoi towers

Figure 2.21a Box trace of *solveTowers(3, `A', `B', `C')*

Figure 2.21b Box trace of solveTowers(3, `A', `B', `C')

Figure 2.21c Box trace of solveTowers(3, 'A', 'B', 'C')

Figure 2.21d Box trace of *solveTowers(3, 'A', 'B', 'C'*)

Figure 2.21e

Box trace of *solveTowers(3, 'A', 'B', 'C'*)

Cost of Hanoi Towers

- How many moves is necessary to solve Hanoi Towers problem for N disks?
- moves(1) = 1
- moves(N) = moves(N-1) + moves(1) + moves(N-1)
- i.e.
 moves(N) = 2*moves(N-1) + 1
- Guess solution and show it's correct with Mathematical Induction!