
Recursion



 

Recursion is more than just a programming 
technique. It has two other uses in computer 
science and software engineering, namely: 



 

as a way of describing, defining, or 
specifying things. 



 

as a way of designing solutions to problems 
(divide and conquer). 





Iterative 
Definition



 

In general, we can define the factorial function in 
the following way:

Recursion 
Definition





Recursion



 

To see how the recursion works, let’s 
break down the factorial function to solve 
factorial(3)

Prof. Atlam2018
Stamp



Breakdown



 

Here, we see that we start at the top level, 
factorial(3), and simplify the problem into 
3 x factorial(2).



 

Now, we have a slightly less complicated 
problem in factorial(2), and we simplify this 
problem into 2 x factorial(1).



Breakdown



 

We continue this process until we are able to 
reach a problem that has a known solution.



 

In this case, that known solution is factorial(0) 
= 1.



 

The functions then return in reverse order to 
complete the solution. 



Breakdown



 

This known solution is called the base case.


 

Every recursive algorithm must have a base 
case to simplify to.



 

Otherwise, the algorithm would run forever 
(or until the computer ran out of memory).



Iterative Algorithm

factorial(n) {
i = 1
factN = 1
loop (i <= n)

factN = factN * i
i = i + 1

end loop
return factN

}

The iterative solution is 
very straightforward.  
We simply loop through 
all the integers 
between 1 and n and 
multiply them together.



Recursive Algorithm

factorial(n) {
if (n = 0) 

return 1
else

return n*factorial(n-1)
end if

}

Note how much simpler 
the code for the recursive 
version of the algorithm is 
as compared with the 
iterative version 

we have eliminated the loop 
and implemented the 
algorithm with 1 ‘if’ 
statement.



How Recursion Works



 

When the function is finished, it needs to 
return to the function that called it.



 

The calling function then ‘wakes up’ and 
continues processing.



How Recursion Works



 

To do this we use a stack.



 

Before a function is called, all relevant data is 
stored in a stackframe.



 

This stackframe is then pushed onto the system 
stack.



 

After the called function is finished, it simply pops 
the system stack to return to the original state.



Basic RecursionBasic Recursion


 

1. Base cases:


 

Always have at least one case that can be 
solved without using recursion.



 

2. Make progress:


 

Any recursive call must make progress 
toward a base case.



Advantage and Limitations of 
Recursion


 

Recursive solutions can be easier to understand 
and to describe than iterative solutions.



 

Recursion works the best when the algorithm 
and/or data structure that is used naturally 
supports recursion.



 

One such data structure is the tree (more to 
come).



 

One such algorithm is the binary search algorithm 
that we discussed earlier in the course.



Limitations of Recursion



 

Therefore, 
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Disadvantage of  recursively


 

Recursion is based upon calling the same function 
over and over, whereas iteration simply `jumps back' 
to the beginning of the loop. A function call is often 
more expensive than a jump. 



 

Recursive algorithms have more overhead than 
similar iterative algorithms


 

Because of the repeated method calls (storing and 
removing data from call stack)



 

This may also cause a “stack overflow” when the 
call stack gets full
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Disadvantage of  recursively



 

if the recursion is deep, say, factorial(1000), 
we may run out of memory.



 

Because of this, it is usually best to develop 
iterative algorithms when we are working with 
large numbers.
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Fibonacci function: 


 

fibonacci(0) = 1


 

fibonacci(1) = 1


 

fibonacci(n) =  fibonacci(n-1) + fibonacci(n-2)   


 

[for n>1]


 

This definition is a little different than the 
previous ones because  It has two base cases, 
not just one; in fact, you can have as many as 
you like. 



 

In the recursive case, there are two recursive 
calls, not just one. There can be as many as you 
like. 



Function Analysis for call fib(5)

fib(5)
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public static int fib(int n)
if (n == 0 || n == 1)
return n

else
return fib(n-1) + fib(n-2)



Conclusion



 

A recursive solution solves a problem by solving a 
smaller instance of the same problem.



 

It solves this new problem by solving an even smaller 
instance of the same problem.



 

Eventually, the new problem will be so small that its 
solution will be either obvious or known.



 

This solution will lead to the solution of the original 
problem.





Towers of Hanoi


 

Move n (4) disks from pole A to pole C


 

such that a disk is never put on a smaller disk

AA BB CCAA BB CC



AA BB CC



 

Move n (4) disks from A to C


 

Move n-1 (3) disks from A to B


 

Move 1 disk from A to C


 

Move n-1 (3) disks from B to C



Figure 2.19a and bFigure 2.19a and b
a) The initial state; b) move n - 1 disks from A to C



Figure 2.19c and dFigure 2.19c and d
c) move one disk from A to B; d) move n - 1 disks from C to B



Hanoi towers

public static void solveTowers( int count, char source, 
char destination, char spare) {

if (count == 1) {
System.out.println("Move top disk from pole " + source +

" to pole " + destination);
} 
else {

solveTowers(count-1, source, spare, destination); // X
solveTowers(1, source, destination, spare);       // Y
solveTowers(count-1, spare, destination, source); // Z

}  // end if
}  // end solveTowers



AA BB CC

AA BB CC

AA BB CC

Figure 2.21aFigure 2.21a
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

AA BB CC



Figure 2.21bFigure 2.21b
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)
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Figure 2.21cFigure 2.21c
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)
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Figure 2.21dFigure 2.21d
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

AA BB CC



Figure 2.21eFigure 2.21e
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)



Cost of Hanoi Towers



 

How many moves is necessary to solve 
Hanoi Towers problem for N disks?



 

moves(1) = 1


 

moves(N) = moves(N-1) + moves(1) + moves(N-1)


 

i.e. 
moves(N) = 2*moves(N-1) + 1



 

Guess solution and show it’s correct with 
Mathematical Induction!

Presenter
Presentation Notes
MI and recursion are closely related. MI can be used to prove that  the number of operations of recursive method is equal to some value, and to prove its correctness. Recursion tree is often used to guess the number of operations.
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