
Data structure and Algorithm

By
Elsayed Atlam

2022

Course Contents
• Data Types

– Overview, Introductory concepts

– Data Types, meaning and implementation

– Abstract data types (ADT)

– Arrays (revisited)

– Structures

• Stacks (recursion)

• Queues

• Linked Lists

• Trees (traversals, implementation)

Course Contents

• Binary Trees

• Indexing Methods

– Hashing

• Binary Search Trees

• Balanced Search Trees
– (AVL Tree) Adelson-Velskii-Landis

• Heaps

Course objectives

 Be familiar with different data structures available
to represents data

 Be able to trace algorithms and verify correctness.

 Be able to develop and implement algorithms using
different data structures

 Be able to select appropriate data structures and
algorithms for given problems

 Be able to use JAVA language to implement
different algorithms pseudo codes.

Objectives of the course

• Present in a systematic fashion the most
commonly used data structures, emphasizing
their abstract properties.

• Discuss typical algorithms that operate each
kind of data structure, and analyze their
performance.

• Compare different Data Structures for solving
the same problem, and choose the best

Readings/references

 Text Book:
 Data Structures & Algorithms in JAVA (5th Edition), by M. Goodrich &

R. Tamassia, John Wiley & Sons, inc., 2010.

 Additional Readings:
 Data Structures and Problem Solving with JAVA (3rd Edition), by Mark

Allen Weiss, Addison Wesley, 2006.

 Lecture slides and handouts

What is data?

 Data

 A collection of facts from which conclusion may be
drawn

 e.g. Data: Temperature 35°C; Conclusion: It is hot.

 Types of data

 Textual: For example, your name (Muhammad)

 Numeric: For example, your ID (090254)

 Audio: For example, your voice

 Video: For example, your voice and picture

 (...)

What is the difference between Data and
Information?

Data are a set of collected numbers, words, anything.
They do not mean anything until they are organized,
arranged or developed.

 Examples: numbers, dates, prices, names (Olive)


Once that happens (after they have been processed),
information is obtained.

 Information actually makes sense and is expressed
through some sort of comprehensible logic.

 Examples: reports, Tables, Figures (olive Oil)

What is the Processing that change Data to
Information?

• Adding

• Deleting

• Multiplying

• Logical operations:!=,==,etc

• Retrieving, modifying, updating, saving

What is data structure?

 A particular way of storing and organizing

data in a computer so that it can be used

efficiently and effectively.

Data Structures are the programmatic way of
storing data so that data can be used efficiently.

Data structure is the logical or mathematical

model of a particular organization of data.

 A group of data elements grouped together

under one name.

 For example, an array of integers

There are many, but we named a few. We’ll learn these

data structures in great detail!

1-D Array

Linked List

Tree
Queue Stack

Types of data structures

The Need for Data Structures

 Goal: to organize data

 Criteria: to facilitate efficient

 storage of data

 retrieval of data

 manipulation of data

 Design Issue:

 select and design appropriate data types
(This is the main motivation to learn and understand data
structures)

Why Study?
• A particular way of storing and organizing data in

a computer so that it can be used efficiently and
effectively

• Designed to develop students understanding the
impact of structuring data to achieve efficiency of a
solution to a problem

• After completion you will be familiar with important
and most often used data structuring techniques.

• It will enable you to understand the manner in
which data is organized and presented later.

Data Structure Operations

 (Demonstrate using class room example!)

 Traversing

 Accessing each data element exactly once so that

certain items in the data may be processed

 Searching

 Finding the location of the data element (key) in the

structure

 Insertion

 Adding a new data element to the structure

Data Structure Operations (cont.)

 Deletion

 Removing a data element from the structure

 Sorting

 Arrange the data elements in a logical order

(ascending/descending)

 Merging

 Combining data elements from two or more data

structures into one

What is algorithm?

 A finite set of instructions which accomplish a

particular task

 A method or process to solve a problem

 Transforms input of a problem to output

Algorithm = Input + Process + Output

Algorithm development is an art – it needs practice,

practice and only practice!

• Algorithm is a step-by-step procedure, which defines a set
of instructions to be executed in a certain order to get the
desired output.

• Algorithms are generally created independent of underlying
languages, i.e. an algorithm can be implemented in more
than one programming language.

• From the data structure point of view, following are some
important categories of algorithms −

• Search − Algorithm to search an item in a data structure.

• Sort − Algorithm to sort items in a certain order.

• Insert − Algorithm to insert item in a data structure.

• Update − Algorithm to update an existing item in a data
structure.

• Delete − Algorithm to delete an existing item from a data
structure.

Introduction
Data structure and Algorithm

 Algorithm: outline, the essence of a
computational procedure, step by step
instructions

 Program: an implementation of an Algorithm,

written in some specific programming language

 Data Structure: Organization of Data needed to
solve the problem

Algorithmic Problem

 Infinite number of input instances
satisfying the specification, For example : A
sorted, non-decreasing sequence of
natural number of non-zero, finite length:

 1, 20, 908, 909, 100000, 1000000

 3

Specification
of Input

?
Specification

of output as a
function of

Input

Algorithmic Solution

 Algorithm describes actions on the input
instance to get an output as desires as
specified

 Again infinitely many correct algorithms can be
used for the same Algorithmic problem

Input
instance,

adhering to
the

specification

Algorithm Output
related to the

input as
required

What is a good Algorithm?

Efficient: Any thing is efficient is
good

 Small Running time

Space Used (Less Memory)

What is a good algorithm?

 It must be correct

 It must be finite (in terms of time and size)

 It must terminate

 It must be unambiguous

 Which step is next?

 It must be space and time efficient

A program is an instance of an algorithm,

written in some specific programming

language

What is a good Program?

There are a number of facets
to good programs: they

must

 run correctly

 run efficiently

 be easy to read and
understand

 be easy to debug and

 be easy to modify.

What does correct mean?

We need to have some formal
notion of

the meaning of correct:
thus we define it to mean

"run in accordance with
the specifications".

A simple algorithm

 Problem: Find maximum of a, b, c

 Algorithm

 Input = a, b, c

 Output = max

 Process
o Let max = a

o If b > max then

max = b

o If c > max then

max = c

o Display max

Order is very important!!!

Algorithm development: Basics

 Clearly identify:

 what output is required?

 what is the input?

 What steps are required to transform input into
output

o The most crucial bit

o Needs problem solving skills

o A problem can be solved in many different
ways

o Which solution, amongst the different
possible solutions is optimal?

How to express an algorithm?
 A sequence of steps to solve a problem

 We need a way to express this sequence of steps

 Natural language (NL) is an obvious choice, but
not a good choice. Why?

o NLs are notoriously ambiguous (unclear)

 Programming language (PL) is another choice,
but again not a good choice. Why?

o Algorithm should be PL independent

 We need some balance

o We need PL independence

o We need clarity

o Pseudo-code provides the right balance

What is pseudo-code?

 Pseudo-code is a short hand way of describing a

computer program

 Rather than using the specific syntax of a

computer language, more general wording is used

 It is a mixture of NL and PL expressions, in a

systematic way

 Using pseudo-code, it is easier for a non-

programmer to understand the general workings of

the program

Pseudo-code: general guidelines

 Use PLs construct that are consistent

with modern high level languages, e.g.

C++, Java, ...

 Use appropriate comments for clarity

 Be simple and precise

Pseudo-Code
 A mixture of natural language and high –level

programming concepts that describes the main
idea behind a generic implementation of a data
structure or Algorithm.

 Eg: Algorithm arrayMax(A,n):

Input: An array A storing n integers,

Output: the maximum element in A.

currentMax  A[0]

for i 1 to n-1 do

 if currentMax <A[i] then currentMax A[i]

return currentMax

Pseudo-Code
It is more structured than usual prose but less
formal than a programing language
What pseudo-code looks like:

Expressions:
 Use standard mathematical symbols to describe

numeric and boolen expresions
 Use  for assignment (`=` in C)
 Use = for the equality relationship (`==` in C)

Method Declaration
 Algorithm name (param1, Param2)

Pseudo-Code
 Programming Constructions:
 Decision structure: if… then… [else….]

 While-loops: while….do

 Repeat-loops: repeat…. Until….

 For-loop: for….do

 Array indexing: A[i], A[I,j]

Methods
 Calls: object method(args)

 Returns: return Value

Components of Pseudo-code With

Examples
 Expressions

 Standard mathematical symbols are used

o Left arrow sign (←) as the assignment operator in
assignment statements (equivalent to the = operator
in Java)

o Equal sign (=) as the equality relation in Boolean
expressions (equivalent to the "= =" relation in
Java)

o For example

 Sum ← 0

 Sum ← Sum + 5

 What is the final value of sum?

Components of Pseudo-code (cont.)

 Decision structures (if-then-else logic)

 if condition then true-actions [else false-actions]

We use indentation to indicate what actions should be
included in the true-actions and false-actions

 For example

if marks > 50 then

 print “Congratulation, you are passed!”

 else

 print “Sorry, you are failed!”

 end if

What will be the output if marks are equal to 75?

Components of Pseudo-code (cont.)
 Loops (Repetition)
 Pre-condition loops

o While loops

• while condition do actions

• We use indentation to indicate what actions
should be included in the loop actions

• For example

 while counter < 5 do

 print “Welcome to CS204!”

 counter ← counter + 1

 end while

What will be the output if counter is initialised to 0, 7?

Components of Pseudo-code (cont.)

 Loops (Repetition)
 Pre-condition loops

o For loops
• for variable-increment-definition do

actions
• For example

 for counter ← 0; counter < 5; counter ←
counter + 2 do

 print “Welcome to CS204!”
 end for

What will be the output?

Components of Pseudo-code (cont.)

 Loops (Repetition)
 Post-condition loops

o Do loops
• do actions while condition

• For example

 do

 print “Welcome to CS204!”

 counter ← counter + 1

 while counter < 5

What will be the output, if counter was initialised to 10?

The body of a post-condition loop must execute at least once

Homework

1. Write an algorithm to find the

largest of a set of 10 numbers.

2. Write an algorithm in pseudocode

that finds the average of (10)

numbers.

Components of Pseudo-code (cont.)

 Method declarations
 Return_type method_name (parameter_list)

method_body

 For example

 integer sum (integer num1, integer num2)

 start

 result ← num1 + num2

 end

 Method calls

 object.method (args)

 For example

 mycalculator.sum(num1, num2)

Components of Pseudo-code (cont.)

 Method returns

 return value

For example

 integer sum (integer num1, integer
num2)

 start

 result ← num1 + num2

 return result

 end

Components of Pseudo-code (cont.)

 Comments

/* Multiple line comments go here. */

// Single line comments go here

Some people prefer braces {}, for
comments

 Arrays

A[i] represents the ith cell in the array A.

The cells of an n-celled array A are indexed
from A[0] to A[n − 1] (consistent with
Java).

Algorithm Design: Practice

 Example : Determining even/odd number

 A number divisible by 2 is considered an

even number, while a number which is

not divisible by 2 is considered an odd

number. Write pseudo-code to display

first N odd/even numbers.

Even/ Odd Numbers

Input range

for num←0; num<=range;
num←num+1 do

 if num % 2 = 0 then

 print num is even

 else

 print num is odd

 endif

endfor

Input: 10 positive integers

Output: Max integer

Process:

Range=10;

Max 0;

Counter 1;

for counter←0;counter<=range;
counter←counter+1 do

 if integer>= max then

 max=integer;

 endif

Endfor

Return max;

1. Write an algorithm to find the largest of a set of

10 numbers.

Input: 10 positive integers

Output: average of 10 integers

Process:

sum 0;

for i←0; i<=10; i←i+1 do

 input x;

 sum=sum+x;

Endfor

Avg=sum/10;

Return Avg;

1. Write an algorithm in pseudocode that finds the

average of (10) numbers.

Write an algorithm which requires a number between 10 and 20,

until the response is appropriate. If the number is more than 20,

it will display a message: “Bigger!" If the number is less than 10,

it will display “smaller!"

Begin

Input: num

Output: numbers between 10 and 20

Process:

Start

 if (num<10) Then

 print “Smaller !”

 elseif (num >20)

 print “Bigger !”

 End if

End

What are the values ​​of the variables A, B and C

after execution of the following instructions?

Begin

A ← 3

B ← 10

C ← A + B

B ← A + B

A ← C

End

Write an algorithm to swap the value the 2

variables A and B.

Input: A and B and C

Output: Swapping

Process:

Start

 C A;

 A B;

 B C;

 Return A and B;

End

Write pseudocode that will take a number as input and

tells whether a number is positive, negative or zero.

Begin

WRITE “Enter a number”

READ num

IF num> 0 THEN

 WRITE “The number is positive”

ELSE IF num = 0 THEN

 WRITE “The number is zero”

ELSE

 WRITE “The number is negative”

 ENDIF

ENDIF End

Question?

• Write a pseudo-code to count (calculate)
the submission of the first 100 normal
number?

• what is a good Algorithm?

• What is a good program?

Measuring the Running time

How should we measure the running time of
an Algorithm?

Experimental Study
Write a certain program that implements
the algorithm
Run the program with data sets of varying
size (large or small) and composition
Clock the time by: Use a method like
System.currentTimeMillis() to get an accurate
measure of the actual running time

Limitations of Experimental Studies

 It is necessary to implement and test the
algorithm in order to determine its running
time.

 Experiments can be done only on a limited set

of inputs, and may not be indicative of the
running time on other inputs not included in
the experiment.

 In order to compare two algorithms, the same

Hardware and software environments should
be used.

Beyond Experimental Studies

We will develop a general methodology for
analyzing running time of algorithms. This approach
(we want to)

 Uses a high-level description of the algorithm instead
of testing one of its implementations.

 Takes into account all possible inputs

 Allows one to evaluate the efficiency of any algorithm
in a way that is independent of the hardware and
software environment

Analysis of Algorithms
 Primitive Operation: low-level operation

independent of programming language.

Can be identified in pseudo-code. For eg:

 Data movement (assign)

 Control (Branch, subroutine call, return)

 Arithmetic an logical operations (e.g. addition,
comparison)

 By inspecting the pseudo-code, we can count
the number of primitive operations executed
by the algorithm

Example: Sorting

a1,a2,a2,……an b1,b2,b3,…..,bn

  

2 5 4 10 7 2 4 5 7 10

INPUT
Sequence of
numbers

OUTPUT
A permutation of
the sequence of

numbers

Sort

Correctness (requirements for the
output)

For any given input the algorithm halts
with the output
•b1<b2<b3……<bn
•b1,b2,…..bn is a permutation of
a1,a2,…..an

Running time Depend on

•Number of element (n)

•How (partially) sorted they are

•Algorithm

Cards Hand Play

Example: Sorting

 1 j→ n

 ←i

Strategy

•Start empty handed
•Insert a card in the right
position of the already sorted
hand
•Continue until all cards are
inserted sorted

INPUT:A[1…n]- an array of integers
OUTPUT: a permutation of A such that
A[1]<A[2]….<A[n]

for j=2 to n do
Key A[j]
Insert A[j] into the sorted sequence
A[1,j-1]
ij-1
While i>0 and A[i]>Key
 do A[i+1] A[i]
 i- -
 A[i+1] key

3 4 6 8 9 7 2 5 1

Analysis of Algorithms

Algorithm Cost Times

for j=2 to n do C1 n-1

Key A[j] C2 n-1

Insert A[j] into the sorted sequence A[1,j-1] 0 n-1

ij-1 C3 n-1

While i>0 and A[i]>Key C4

do A[i+1] A[i] C5

 i- - C6

 A[i+1] key C7 n-1

Total time= n(C1+C2+C3+C7)+ -
(C1+C2+C3+C5+C6+C7)





n

j

j CCCt
2

)654(




n

j

jt
2

1
2




n

j

jt

1
2




n

j

jt

Best/Worst/average Case (1)
Total time= n(C1+C2+C3+C7)+

- (C1+C2+C3+C5+C6+C7)

 Best Case: elements already sorted; tj=1,

Running time= f(n), i.e. Linear time

 Worst Case: elements are sorted in inverse order, tj=j,
running time =f(n2), i.e quadratic time

 Average case: tj=j/2, running time = f(n2)

 i.e quadratic time





n

j

j CCCt
2

)654(

Best/Worst/average Case (2)

For a specific size of input n, investigate
running times for different input instance

Worst case

0

1

2

3

4

5

6

a b c d e f j

input instance

Best case

Average case 

R
u

n
n

in
g tim

e

Best/Worst/average Case (3)

For inputs of all sizes:

0

2

4

6

8

10

12

a b c d e f j

Series1

Series2

Series3

Best/Worst/average Case (4)

 Worst Case: is usually used: it is an upper bound
and in certain application domains (e.g. air traffic
control, surgery) knowing the worst case time
complexity is of crucial important.

 For some algorithms worst case occurs fairly often

 Average case: is often as bad as the worst case

 Finding average case can be very difficult

Asymptotic Analysis

 Goal: to simplify analysis of running time by
getting rid of details which may be affected by
specific implementation and hardware

 Like *rounding*:1,000,001=1,000,000

 3n2=n2

 Capturing the essence: how the running time of
an algorithm increases with the size of the input
in the limit.

 Asymptotic more efficient algorithms are best for all
but small inputs

Asymptotic Analysis of Running time

 Using O-notation to express number of primitive
operations executed as function of input size.

 Comparing asymptotic running times:
 An Algorithm that runs in O(n) is better than one runs in

O(n2) time

 Similarly , O(log n) is better than O(n)

 Hierarchy of functions: log n<n<n2 <n3 <2n

 Caution! Beware of very large constant factors. An
algorithm running in time 1,000,000 n is still O(n) but
might be less efficient than one running in time 2n2
which is O(n2)

Example of Asymptotic Analysis
Algorithm of prefix Averages1(X):

Input: An n-element array X of Numbers

Output: An n-element array A of numbers such that
A[i] is the average of elements X[0],….,X[i]

for i0 to n-1 do

a 0

for j 0 to i do

a a +X[j]

A[j]a/(i+1)

return array A

Analysis: running time is O(n2)

n iterations i iterations with
i=0,1, n-1
Executed I times

Example of Asymptotic Analysis
(A Better Algorithm)

Algorithm of prefix Averages2(X):
Input: An n-element array X of Numbers
Output: An n-element array A of numbers such that A[i] is the
average of elements X[0],….,X[i]
S o
for i 0 to n do
S S +X[i]
A[i]S/(i+1)
return array A

Analysis: running time is O(n)

Example of Asymptotic Analysis
(A Better Algorithm)

Algorithm of prefix
Averages2(X):

Input: An n-element array X of
Numbers
Output: An n-element array A of
numbers such that A[i] is the
average of elements X[0],….,X[i]
S o
for i 0 to n do
S S +X[i]
A[i]S/(i+1)
return array A

Analysis: running time is O(n)

Algorithm of prefix
Averages1(X):

Input: An n-element array X of
Numbers
Output: An n-element array A
of numbers such that A[i] is the
average of elements X[0],….,X[i]
for i0 to n-1 do
a 0
for j 0 to i do
a a +X[j]
A[j]a/(i+1)
return array A
Analysis: running time is O(n2)

Comparison of running Times

Running
Time

Maximum Problem Size (n)

1 Second 1 minute 1 hour

400n 2500 150000 9000000

20 n log n 4096 166666 7826087

2n2 707 5477 42426

n4 31 88 244

2n 19 25 31

you can see what is the largest size of the problem you can solve in one second , 1 minutes
and 1 hour,

Notice

• نلاحظ ان سرعة معالجة البيانات تعتمد علي عدة عوامل

:إضافة إلي العامل الزمني اللازم للمعالجة مثل

• عوامل تحديد الذاكرة الرئيسية

• عوامل تحديد وحدات الإدخال والإخراج

• عوامل تحديد تفاعل وحدات الإدخال والإخراج مع الذاكرة
 الرئيسية

• What is Big-O notation?

• Explanation about Array?(delete, insert,….)

