
What is Data structure

• In computer science , a data structure is

a particular way of storing and organizing

data in a computer so that it can be used

efficiently.

• A data structure is an arrangement of

data in a computer's memory or even

disk storage. An example of several

common data structures are arrays,

linked lists, queues, stacks, binary trees,.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Algorithmic_efficiency

What is the advantage of using Data

structure?

Control and organization the data inside the memory

Build a strong and coherent programs

 it gives the user a lot of best way to write different
programs

Reduce the time of storing and retrieving the data it
from the memory

 it tells how data can be stored and accessed at
elementary level.

A Real Life Example

•Lisa

•Michele

•John

•110

•622-9823

•112-4433

•75

•Bronson

•Paola

Electronic Phone Book

Contains different DATA:

 - names

 - phone number

 - addresses

Need to perform certain OPERATIONS:

 - add

 - delete

 - look for a phone number

 - look for an address

How to organize the data so to optimize the

efficiency of the operations

Another Real Life Example
Algorithms, on the other hand, are used to

manipulate the data contained in these

data structures as in searching and sorting

 Name Position

Aaron Manager

Charles VP

George Employee

Jack Employee

Janet VP

John President

Kim Manager

Larry Manager

Martha Employee

Patricia Employee

After thinking about the problem for a

while. You decide that the tree diagram

is much better structure for showing the

work relationships at the ABC company.

http://en.wikipedia.org/wiki/File:Data_stack.svg
http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html

Pointer Implementation
This approach is to creating a list is to link groups of memory cells together

using the pointers. Each group of memory cells is called as a node. With this

implementation every node contains the data item and the pointer to the next

item in the list. You can picture this structure as a chain of nodes linked

together by the pointers. As long as we know where the chain begins, we can

follow the links to reach any item in the list

The Stack

A stack is a pile of item kept one over another,
i.e. A stack only have a head or top no bottom.

Any item added becomes the new top of the
stack. And any item deleted or takeout from the
stack is also taken out from the top & the top of
Stack get reduced by one.

That is the first item which goes in to the stack
will come out of the stack the last as the last item.
From this we conclude that a stack is a LIFO (last
in first out) Stack is not the same as array.

Cont. The Stack

 From the definition we found that stack provide
provisions for adding of items and deleting of
item from it, But it can be done from only with on
end which is the top of the stack.

A stack doesn't have tail or the end point. When
we add any item to stack the head of stack goes
up. And when we delete any items from a stack
the head top) of the stack goes down.

 In Summary: A Stack is an ordered collection of
items into which new items may be inserted and
from which items may be deleted at one end,
called the top of the stack. The other name of
stack is Last-in -First-out list.

Operation of Stack

 From the above explanation we can fairly understand that
stack can do only two work i.e. adding of item and deleting
of item from it. We now points to the operation of stacks

(1) Push : It is the operation by which we can add any item to
a stack. This operation required the item to be added and a
stack in which the item will be added .

(2) Pop : It is the operation by which We can delete the upper
item from the stack and this operation gives us the item that it
is deleted from the stack. In other words this operation is
used to take out the upper item from any stack .

 (3) IsEmpty : This operation is used to check whether the
stack we are using is empty or filled by any item. If the stack
is empty this operation gives us as appropriate answer

http://en.wikipedia.org/wiki/File:Data_stack.svg

Code of Stack in C.
• Top(): return the top most element in the stack without

removing it , if the stack is empty an errors return.

• We only check the top variable if it is equal to zero
then your stack is empty. If it is equal to the
maximum value of stack member then the stack is
full.

• Size(): return the number of element in the stack at
any time

Increase and decrease Top element

• If we want to add any item to stack we increase
the value of top by one and add any item to the
stack array with the increased top as the index
of the array.

• If we want to delete or want to Pop any item
from the stack we decrease the top by one
and return the current or top item of the stack
array .

Example of inserting and deleting

 5 numbers

In order to implement a stack using pointers, we need to

link nodes together just like we did for the pointer

implementation of the list.

 Each node contains the stack item and the pointer to

the next node. We also need a special pointer(stack

pointer) to keep track of the top of our stack.

Pointer Implementation in the Stack

Selective Removal Operation

1

2

.

.

x

.

.

n Looks like other data structure as array

Remove/Insert an at index x

Not possible

Stack Operations implemented by

Array of size 3

Size()=0

Isempty()=1

Top()=-1, Null

SP

Size()=1

Isempty()=0

Top()=0

stack[top]=5 Push(5)

5
SP

Push(6)

Size()=2

Isempty()=0

Top()=1

Stak[top]=6

5

6 SP

Size()=3

Isempty()=0

Top()=2

5

6

Push(4)

9
SP

Pop()
Size()=2

Isempty()=0

Top()=1

5

6 SP

Size()=3

Isempty()=0

Top()=2

Push(9)

5

6

4
SP

Cont. Stack Operations

9
SP

Size()=3

Isempty()=0

Top()=2
Push(2)

5

6

overflow

Push will return error, in this case

pseducode will deal with this case

by increasing the size of the array

by the library function realloc() and

then copy the elements to the new

array and increase the new element

5

6

9

2

Push(2)

Size()=4

Isempty()=0

Top()=3

Stack[top]=2

The drawback of this method is

the consuming time , and losing

t i m e a n d w a s t ag e o f sp a c e

There is other way to implement

t he s t ack us i ng L i nked l i s t

Stack Operations implemented by

linked list

Push(5)

Advantage:

No wastage of space

No upper limit size

Disadvantage

The cost of the node creation

Push() and Pop() take time

as node creation and

deletion take more list

Size()=0

Isempty()=1

Top()=-1, Null

Null 5

Null sp

sp

Push(6)

Null 5

6

Size()=2

Isempty()=0

Top()=1

sp 6

Size()=1

Isempty()=0

Top()=0

Stack Operations implemented by

linked list

Push(4)

Size()=3

Isempty()=0

Top()=2

 stack[top]=4

Null 5

6

4 sp
Pop()

Null 5

6

4

sp

Deleted

Size()=2

Isempty()=0

Top()=1

In Conclusion

The simple algorithm uses a stack and is as

follows:

Make an empty stack. Read characters until end

of file. If the character is an open anything, push it

onto the stack.

 If it is a close anything, then if the stack is empty

report an error.

Otherwise, pop the stack. If the symbol popped is

not the corresponding opening symbol, then report

an error.

At end of file, if the stack is not empty report an

error.

Question?

Count the max number in stack, by C?

Write a program using Pointer?

Count the max number in stack,

changing only in pop function
• #include<iostream.h>

• #include<conio.h>

• int size=10;

• int a[10],top=0;

• int pop();

• void push(int[],int);

• main()

• { int i,k;

• for(i=0;i<size;i++)

• {cin>>k;

• push(a,k);}

• cout<<"THE MAX VAL = "<<pop();

• getch();}

Cont. max number
• void push(int a[],int k)

• {

• if(top==size-1) cout<<" FULL STACK";

• else

• a[top++]=k;

• }

• int pop()

• {

• int i, max=a[top--];

• for (;;)

• { if(top=0) break;

• else

• if(max<a[top])

• max=a[top];

• top--; } return max;

• }

Applications :Balancing Symbols
• Compilers check your programs for syntax errors, but

frequently a lack of one symbol (such as a missing brace or

comment starter) will cause the compiler to spill out a

hundred lines of diagnostics without identifying the real

error.

• A useful tool in this situation is a program that checks

whether everything is balanced. Thus, every right brace,

bracket, and parenthesis must correspond to their left

counterparts. The sequence [()] is legal, but [(]) is wrong.

Obviously, it is not worthwhile writing a huge program for

this, but it turns out that it is easy to check these things.

• For simplicity, we will just check for balancing of

parentheses, brackets, and braces and ignore any other

character that appears.

Evaluating a Postfix Expression
 You may be asking what a stack is good for, other than

reversing a sequence of data items. One common application
is to find the value of a postfix expression. Another is to
convert an infix expression to postfix. We will not look at the
conversion algorithm here, but we will examine the algorithm
to evaluate a postfix expression.

 First, let's explain the terminology. An infix expression
is the type that we are used to in ordinary algebra,
such as 3 + 9, which is an expression representing the
sum of 3 and 9. Infix expressions place their (binary)
operators between the two values to which they apply.
In the above example, the addition operator was placed
between the 3 and the 9.

 A postfix expression, in contrast, places each operator
after the two values to which it applies. (Post means
"after", right?) The above expression would be 3 9 +,
when rewritten in postfix

http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html
http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html
http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html
http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html
http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html
http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html
http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html
http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html
http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html
http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html
http://cis.stvincent.edu/html/tutorials/swd/stl/stacks/stacks.html

Cont. Evaluating a Postfix

Expression
• Here are a few more examples in the following

table. The infix form is shown on the right, and

the postfix form is given on the left .

Postfix: Infix:

16 2 / 16 / 2

2 14 + 5 * (2 + 14) * 5

2 14 5 * + 2 + 14 * 5

6 2 - 5 4 + * (6 - 2) * (5 + 4)

Operation
Stack (from bottom

to top)
Input Symbol

((

(((

((((

(((2 2

(((2 * *

(((2 * 5 5

2 * 5 = 10 and push ((10)

((10 - -

((10 - ((

((10 - (1 1

Input String: (((2 * 5) - (1 * 2)) / (11 - 9))

Operation Stack (from bottom to top) Input Symbol

((10 - (1 * *

((10 - (1 * 2 2

1 * 2 = 2 & Push ((10 – 2)

10 - 2 = 8 & Push (8)

(8 / /

(8 / ((

(8 / (11 11

(8 / (11 - -

(8 / (11 - 9 9

11 - 9 = 2 & Push (8 / 2)

8 / 2 = 4 & Push 4)

Pop & Print Empty New line

• Algorithm
• 1. Read one input character

• 2. Actions at end of each input

• Opening brackets (2.1) Push into stack and then Go to step (1)

• Number (2.2) Push into stack and then Go to step (1)

• Operator (2.3) Push into stack and then Go to step (1)

• Closing brackets (2.4) Pop from character stack

 (2.4.1) if it is closing bracket, then discard it, Go to step (1)

 (2.4.2) Pop is used three times

 The first popped element is assigned to op2

 The second popped element is assigned to op

 The third popped element is assigned to op1

 Evaluate op1 op op2

 Convert the result into character and

 push into the stack

 Go to step (2.4)

• New line character (2.5) Pop from stack and print the answer

• STOP

Cont. Evaluating a Postfix

Expression
The algorithm to evaluate a postfix expression works

like this: Start with an empty stack of floats. Scan the
postfix expression from left to right. Whenever you
reach a number, push it onto the stack. Whenever you
reach an operator (call it Op perhaps), pop two items,
say First and Second , and then push the value obtained
using Second Op First .

When you reach the end of the postfix expression, pop
a value from the stack. That value should be the correct
answer, and the stack should now be empty. (If the
stack is not empty, the expression was not a correct
postfix expression .

• Let's look at the postfix expression evaluation
algorithm by way of example. Consider the postfix
expression 2 14 + 5 * that was mentioned above.

• We already know from its infix form ,(2 + 14) * 5 ,that
the value should be 16 * 5 = 80 .The following
sequence of pictures depicts the operation of the
algorithm on this example. Read through the pictures
from left to right .

• Let's evaluate another postfix expression, say 2 10
+ 9 6 - / which is (2 + 10) / (9 - 6) in infix. Clearly the
value should work out to be 12 / 3 = 4 .

• Trace through the algorithm by reading the
following pictures from left to right .

•

When one reaches an operator in this algorithm,

it is important to get the order right for the values

to which it applies. The second item popped off

should go in front of the operator, while the first

one popped off goes after the operator. You can

easily see that with subtraction and division the

order does matter .

A good exercise for the reader is to develop a

program that repeatedly evaluates postfix

expressions. In fact, with enough work, it can be

turned into a reasonable postfix calculator .

Another Example

• the postfix expression 6 5 2 3 + 8 * + 3 + * where its

infix was: 6*((5+(2+3)*8)+3)

• is evaluated as follows: The first four symbols are

placed on the stack. The resulting stack is

 Next a '+' is read,

so 3 and 2 are

popped from the

stack and their

sum, 5, is pushed.

Next 8

is

pushed.

Now a '*' is

seen, so 8 and

5 are popped

as 8 * 5 = 40 is

pushed.

Cont. Another Example
• the postfix expression 6 5 2 3 + 8 * + 3 + *

Next a '+' is seen,

so 40 and 5 are

popped and 40 + 5

= 45 is pushed.

Now, 3

is

pushe.

Next '+' pops 3

and 45 and

pushes 45 + 3 =

48.

Finally, a '*' is

seen and 48 and

6 are popped, the

result 6 * 48 =

288 is pushed

Checking Prefix and Postfix of

Stack in C.
• #include<iostream.h>

• #include<conio.h>

• #include<stdlib.h>

• void check(char[]);

• main() {char s[100];

• cin>>s;

• check(s);

• getch(); }

• void check(char s[])

• {char c;

• int i, x, y; x=y=0;

• for (i=0;(c=s[i])!='\0';i++){

• if(c=='('||c=='[') x++;

Cont. // Checking Prefix and

Postfix of Stack in C.
• else

• if(c==')'||c==']') y++;

• if(y>x){ cout<<"ERROR\n"; exit(1);

• }

• }

• if(y>x||x>y)

• {

• cout<<"ERROR\n";

• exit(1); }

• cout<<"ACCEPT \n"; }

Question?

Write a source code of program for
Checking Prefix and Postfix of Stack in C
using structure?

Write the infix of the postfix expression
6 5 2 3 + 8 * + 3 + *

