
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: Operating-System
Structures

2.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: Operating-System Structures

● Operating System Services
● User Operating System Interface
● System Calls
● Types of System Calls
● System Programs
● Operating System Design and Implementation
● Operating System Structure
● Operating System Debugging
● Operating System Generation
● System Boot

2.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

● To describe the services an operating system provides to users,
processes, and other systems

● To discuss the various ways of structuring an operating system
● To explain how operating systems are installed and customized and

how they boot

2.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services

● Operating systems provide an environment for execution of programs and
services to programs and users

● One set of operating-system services provides functions that are helpful to the
user:

● User interface - Almost all operating systems have a user interface (UI).
4 Varies between Command-Line (CLI), Graphics User Interface

(GUI), Batch
● Program execution - The system must be able to load a program into

memory and to run that program, end execution, either normally or
abnormally (indicating error)

● I/O operations - A running program may require I/O, which may
involve a file or an I/O device

2.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

● One set of operating-system services provides functions that are helpful to the user
(Cont.):

● File-system manipulation - The file system is of particular interest. Programs
need to read and write files and directories, create and delete them, search them,
list file Information, permission management.

● Communications – Processes may exchange information, on the same computer
or between computers over a network

4 Communications may be via shared memory or through message passing
(packets moved by the OS)

● Error detection – OS needs to be constantly aware of possible errors
4 May occur in the CPU and memory hardware, in I/O devices, in user

program
4 For each type of error, OS should take the appropriate action to ensure

correct and consistent computing
4 Debugging facilities can greatly enhance the user’s and programmer’s

abilities to efficiently use the system

2.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

● Another set of OS functions exists for ensuring the efficient operation of the system
itself via resource sharing

● Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

4 Many types of resources - CPU cycles, main memory, file storage, I/O
devices.

● Accounting - To keep track of which users use how much and what kinds of
computer resources

● Protection and security - The owners of information stored in a multiuser or
networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

4 Protection involves ensuring that all access to system resources is
controlled

4 Security of the system from outsiders requires user authentication, extends
to defending external I/O devices from invalid access attempts

2.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A View of Operating System Services

2.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Calls

● Programming interface to the services provided by the OS
● Typically written in a high-level language (C or C++)
● Mostly accessed by programs via a high-level Application

Programming Interface (API) rather than direct system call
use

● Three most common APIs are Win32 API for Windows, POSIX
API for POSIX-based systems (including virtually all versions
of UNIX, Linux, and Mac OS X), and Java API for the Java
virtual machine (JVM)

Note that the system-call names used throughout this
text are generic

2.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of System Calls

● System call sequence to copy the contents of one file to another file

2.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Standard API

2.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Implementation

● Typically, a number associated with each system call
● System-call interface maintains a table indexed according to these

numbers
● The system call interface invokes the intended system call in OS kernel

and returns status of the system call and any return values
● The caller need know nothing about how the system call is implemented

● Just needs to obey API and understand what OS will do as a result
call

● Most details of OS interface hidden from programmer by API
4 Managed by run-time support library (set of functions built into

libraries included with compiler)

2.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

API – System Call – OS Relationship

2.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Parameter Passing

● Often, more information is required than simply identity of desired
system call
● Exact type and amount of information vary according to OS and call

● Three general methods used to pass parameters to the OS
● Simplest: pass the parameters in registers

4 In some cases, may be more parameters than registers
● Parameters stored in a block, or table, in memory, and address of

block passed as a parameter in a register
4 This approach taken by Linux and Solaris

● Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

● Block and stack methods do not limit the number or length of
parameters being passed

2.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Parameter Passing via Table

2.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

● Process control
● create process, terminate process
● end, abort
● load, execute
● get process attributes, set process attributes
● wait for time
● wait event, signal event
● allocate and free memory
● Dump memory if error
● Debugger for determining bugs, single step execution
● Locks for managing access to shared data between processes

2.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

● File management
● create file, delete file
● open, close file
● read, write, reposition
● get and set file attributes

● Device management
● request device, release device
● read, write, reposition
● get device attributes, set device attributes
● logically attach or detach devices

2.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

● Information maintenance
● get time or date, set time or date
● get system data, set system data
● get and set process, file, or device attributes

● Communications
● create, delete communication connection
● send, receive messages if message passing model to host name or

process name
4 From client to server

● Shared-memory model create and gain access to memory regions
● transfer status information
● attach and detach remote devices

2.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

● Protection
● Control access to resources
● Get and set permissions
● Allow and deny user access

2.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Windows and Unix System Calls

2.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Standard C Library Example

● C program invoking printf() library call, which calls write() system call

2.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example: MS-DOS

● Single-tasking
● Shell invoked when system

booted
● Simple method to run program

● No process created
● Single memory space
● Loads program into memory,

overwriting all but the kernel
● Program exit -> shell reloaded

At system startup running a program

2.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example: FreeBSD

● Unix variant
● Multitasking
● User login -> invoke user’s choice of shell
● Shell executes fork() system call to create

process
● Executes exec() to load program into

process
● Shell waits for process to terminate or

continues with user commands
● Process exits with:

● code = 0 – no error
● code > 0 – error code

2.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Structure

● General-purpose OS is very large program
● Various ways to structure ones

● Simple structure – MS-DOS
● More complex -- UNIX
● Layered – an abstrcation
● Microkernel -Mach

2.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simple Structure -- MS-DOS

● MS-DOS – written to provide the
most functionality in the least space
● Not divided into modules
● Although MS-DOS has some

structure, its interfaces and
levels of functionality are not
well separated

2.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Non Simple Structure -- UNIX

 UNIX – limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS consists of
two separable parts
● Systems programs
● The kernel

4 Consists of everything below the system-call interface and
above the physical hardware

4 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

2.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Traditional UNIX System Structure

Beyond simple but not fully layered

2.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Layered Approach

● The operating system is divided
into a number of layers (levels),
each built on top of lower layers.
The bottom layer (layer 0), is the
hardware; the highest (layer N) is
the user interface.

● With modularity, layers are
selected such that each uses
functions (operations) and services
of only lower-level layers

2.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

● Moves as much from the kernel into user space
● Mach example of microkernel

● Mac OS X kernel (Darwin) partly based on Mach
● Communication takes place between user modules using message

passing
● Benefits:

● Easier to extend a microkernel
● Easier to port the operating system to new architectures
● More reliable (less code is running in kernel mode)
● More secure

● Detriments:
● Performance overhead of user space to kernel space

communication

2.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

2.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Modules

● Many modern operating systems implement loadable kernel modules
● Uses object-oriented approach
● Each core component is separate
● Each talks to the others over known interfaces
● Each is loadable as needed within the kernel

● Overall, similar to layers but with more flexible
● Linux, Solaris, etc

2.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Modular Approach

2.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hybrid Systems

● Most modern operating systems are actually not one pure model
● Hybrid combines multiple approaches to address performance,

security, usability needs
● Linux and Solaris kernels in kernel address space, so monolithic,

plus modular for dynamic loading of functionality
● Windows mostly monolithic, plus microkernel for different

subsystem personalities
● Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming

environment
● Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called kernel
extensions)

2.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mac OS X Structure

2.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

iOS

● Apple mobile OS for iPhone, iPad
● Structured on Mac OS X, added functionality
● Does not run OS X applications natively

4 Also runs on different CPU architecture
(ARM vs. Intel)

● Cocoa Touch Objective-C API for developing
apps

● Media services layer for graphics, audio, video
● Core services provides cloud computing,

databases
● Core operating system, based on Mac OS X

kernel

2.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Android
● Developed by Open Handset Alliance (mostly Google)

● Open Source
● Similar stack to IOS
● Based on Linux kernel but modified

● Provides process, memory, device-driver management
● Adds power management

● Runtime environment includes core set of libraries and Dalvik virtual
machine
● Apps developed in Java plus Android API

4 Java class files compiled to Java bytecode then translated to
executable than runs in Dalvik VM

● Libraries include frameworks for web browser (webkit), database
(SQLite), multimedia, smaller libc

2.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Android Architecture

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 2

