COE211: Digital Logic Design

Introduction



@ Digital Computer Systems

e Digital systems consider discrete amounts of data

e Examples
e 26 letters in the alphabet
e 10 decimal digits

e Larger quantities can be built from discrete values:
e Words made of letters
e Numbers made of decimal digits (e.g. 239875.32)

e Computers operate on binary values (0 and 1)

e Easy to represent binary values electrically
e Voltages and currents
e Can be implemented using circuits
e Create the building blocks of modern computers
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@ Understanding Decimal Numbers

e Decimal numbers are made of decimal digits:
(0,1,2,3,4,5,6,7,8,9) = Base =10

e But how many items does a decimal number
represent?

o 8653 = 8x10°+ 6x10%+ 5x10" + 3 x10°
e Number=d,xB?®+d,xB2+d,xB"+d,xB?=Value

e What about fractions?
o 97654.35 = 9x10% + 7x10° + 6x102 + 5x10" + 4x10° + 3x10°7 + 5x1072
e In formal notation — (97654.35),,
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@ Understanding Binary Numbers

e Binary numbers are made of binary digits (bits):
e Dand1

e How many items does a binary number represent?
& 8 4 2 1 = Weights
o (1011), = 1x2° + 0x22 + 1x2" + 1x2° = (11),,

e What about fractions?
e (110.10), = 1x2% + 1x2" + 0x2° + 1x271 + 0x22

e Groups of eight bits are called a byte
e (11001001),

e Groups of four bits are called a nibble
e (1101),
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@ Understanding Octal Numbers

e Octal numbers are made of octal digits:
(0,1,2,3,4,5,6,7)
e How many items does an octal number represent?

o 512 64 8 1 = Weights
o (4536), = 4x8° + 5x87 + 3x8" + 6x8° = (1362),

e What about fractions?
o (465.27), = 4x82 + 6x8" + 5x87 + 2x871 + 7x872

e Octal numbers don’t use digits 8 or 9
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@ Understanding Hexadecimal Numbers

e Hexadecimal numbers are made of 16 digits:
e (0,1,2,3,4,56,7,89,A,B,C,D,E,F)

e How many items does a hex number represent?

4096 256 16 1 = Weights
o (3A9F),, = 3x16° + 10x16° + 9x16" + 15x16° = 14999, ,

e What about fractions?
o (2D3.5),; = 2x16° + 13x16" + 3x16° + 5x16™ = 723.3125,,

e Note that each hexadecimal digit can be
represented with four bits

e (1110), = (E)46
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Why Use Binary Numbers?

Volts

e Easy to represent 0 and 1
using electrical values

4
e Possible to tolerate noise
e Easy to transmit data R i
e Easy to build binary circuits
3
1 -
AND Gate 0 Transition occurs
0 between these limits
- :
Range
for logic-0

o
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Convert an Integer from Decimal o Another Base

For each digit position:
1. Divide decimal nhumber by the base (e.g. 2)
2. The remainder is the lowest-order digit
3. Repeat first two steps until no divisor remains

Example for (13),,:
Quotient Remainder Coefficient

132= 6 , 1 a,=1

6/2 = 3 , 0 a,=0

3/2 = 1 : 1 a=1

12= 0 , 1 az=1
Answer (13),,=(a;a,a, ay),=(1101),

f X
MSB LSB
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Convert a Fraction from Decimal fo Another Base

For each digit position:
1. Multiply decimal number by the base (e.g. 2)
2. The integer is the highest-order digit
3. Repeat first two steps until fraction becomes zero

Example for (0.625),,:

Integer Fraction Coefficient
0.625x 2 = 1 - 0.250 a =1
0.250x 2 = 0 + 0.500 a,=0
0.500x 2 = 1 + 0 a,=1

Answer (0-625)10 —_ (0.3_1 a_z a_3 )2 — (0.1 01 )2
? X
MSB LSB
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@ Conversion Between Base 16 and Base 2

e Conversion is easy!
Determine the 4-bit value for each hex digit
e Note that there are 16 different values of four bits
e Easier to read and write in hexadecimal
e Representations are equivalent!

3A9F,. = 0011 1010 1001 1111,
3 A 9 F
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@ The Growth of Binary Numbers

2!’1

20=1

21=2

22=4

23=8

24=16

2°=32

26=64

N[ O OB~

2'=128
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n i

8 28=256
9 2°=512
10 | 2'9=1024
11 | 211=2048
12 | 212=4096
20 | 22=1M
30 | 2%3=1G
40 240=1T
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Mega
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@ Understanding Binary Coded Decimal

e Binary Coded Decimal (BCD) represents each
decimal digit with four bits

Ex. 0011 0010 1001 = 329,,

3 2 9 Digit BCD Code

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
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@ Putting It All Together

Decimal |Binary| Octal | Hexadecimal
0 0000 0 0 000
1 0001 1 1 0001
2 0010 2 2 0010
3 0011 3 3 0011
4 0100 4 4 0100
5 0101 5 5 0101
6 0110 6 6 0110
7 0111 7 7 0111
8 1000 10 8 1000
9 1001 o i 9 1001
10 1010 12 A 0001 0000
11 1011 13 B 0001 0001
12 1100 14 4 0001 0010
13 1101 15 D 0001 0011
14 1110 16 E 0001 0100
15 1111 17 F 0001 0101
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@ How To Represent Signed Numbers

ePlus and minus signs are used for decimal numbers:
e25 (or +25), -16, etc
eIln computers, everything is represented as bits

eThree types of signed binary number
representations:

esigned magnitude
e1’s complement
e2’s complement

eIn each case: left-most bit indicates the sign:
‘0’ for positive and ‘1’ for negative

10/5/2021 COE211: Digital Logic Design 14



@ Signed Magnitude Representation

e The left most bit is designated as the sign bit while
the remaining bits form the magnitude

00001100, = 12,,
A

Sign bit Magnitude

10001100, = -12,,
7N

Sign bit Magnitude
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@ One’s Complement Representation

The one’s complement of a binary number is done
by complementing (i.e. inverting) all bits

1’s comp of 00110011 is 11001100
1’s comp of 10101010 is 01010101

For a n-bit number N the 1’s complement is
(2"-1)-N
Called “diminished radix complement’ by Mano

To find the negative of a 1’s complement number
take its 1’s complement

00001100, = 12,, 11110011,= -12,,

Sign bit Magnitude Sign bit Code
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@ One’s Complement Representation

4 bits
J

16 combinations

10/5/2021

7 0111
"""""" 6 | 0110
""""" 1 | 0001
0 0000
-0 1111
""""" -1 | 1110
"""""" -6 | 1001
-7 1000
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@ Two’s Complement Representation

The two’s complement of a binary number is done
by complementing (inverting) all bits then adding 1

2’s comp of 00110011 is 11001101
2’s comp of 10101010 is 01010110

For an n-bit number N the 2’s complement is
(2"-1)- N+ 1

Called “radix complement’ by Mano

To find the negative of a 2’s complement number
take its 2’s complement

00001100, = 12,, 11110100,= -12,,

7z N 7 %
Sign bit Magnitude Sign bit Code
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@ Two's Complement Shortcuts

e Algorithm 1: Complement each bit then add 1 to the

result
N = 01100101 [N] = 10011011
10011010 01100100
+ 1 + 1
10011011 01100101

e Algorithm 2: Starting with the least significant bit,
copy all of the bits up to and including the first ‘1’
bit, then complement the remaining bits

N =01100110
INN =10011010
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@ Two’s Complement Representation

4 bits
J

16 combinations

10/5/2021

7 0111
""""" 6 | 0110
""""" 2 | 0010
""""" 1 | 0001

0 0000

-1 1111
""""" -2 | 1110
""""" -7 | 1001
''''''' -8 | 1000
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Putting All Together

Signed-2's Signed-1's Signed

Decimal Complement Complement Magnitude
+7 0111 0111 0111
+6 0110 0110 0110
+3 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 — 1111 1000
-] 1111 1110 1001
=2 1110 1101 1010
el 1101 1100 1011
-4 1100 1011 1100
~3 1011 1010 1101
-6 1010 1001 1110
-7 1001 1000 1111
-8 1000 B —
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Finite-Precision Number Representation

Machines that use 2’s complement arithmetic can
represent integers in the range

-2"sNs2" -1
n is the number of bits used for representing N
Note that 2"" - 1 = (011..11), and - 2" = (100..00),

2’'s complement code has more negative numbers
than positive

1’s complement code has 2 representations for
zero

For an n-bit number in base (i.e. radix) z there are z"
different unsigned values (combinations)

0,1, ...2"")
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@ 2's Complement Addition

Using 2’s complement representation, adding
numbers is easy

Step 1: Add binary numbers
Step 2: Ignore the resulting carry bit

For example: (12),, + (1)1
(12),, = +(1100),
= 01100, in 2’s comp. R ———————
(1)10 = +(0001), Eﬁ::nt il it
= 00001, in 2’s comp.

Ignore
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@ 2's Complement Subtraction

e Using 2’s complement representation, subtracting
numbers is also easy

Step 1: Take 2’s complement of 2"d operand
Step 2: Add binary numbers

Step 3: Ignore the resulting carry bit 01100

e For example: (12),, = (1)40 710000 1>
(12),0, = +(1100), 2's comp < 01100
= 01100, in 2’s comp. Add + 11111
(—=1)10 =—(0001), Einal = —————————
Result 01011

= 11111, in 2’s comp.
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@ 2's Complement Subtraction (conta)

e Example 2: (13),0 = (5)10
(13)40 = +(1101), = (01101),
(=5)10 =-(0101), = (11011),
e Adding these two 5-bit codes:
01101

+ 11011

Carry —— (1] 01000

e Discarding the carry bit, the sign bit is seen to be
zero, indicating a positive result

Indeed: (01 000)2 = +(8)1o
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@ 2's Complement Subtraction (contd)

e Example 3: (5),o — (12),,
(5)40 = +(0101), = (00101),
(-12),, = —=(1100), = (10100),
e Adding these two 5-bit codes:
00101

+ 10100

Carry —— (0| 11001

e Here, there is no carry bit and the sign bit is 1.
This indicates a negative result, which is what we

expect: (11001), = = (7),,
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@ Gray Code

Gray code is not a number Digit | Binary ggae
system 0 | 0000 0000
It is an alternate way to ; ggg; ggg:
represent four bit data 3 0011 0010
Only one bit changes from one ; g:gg gm
decimal digit to the next = D =
Useful for reducing errors in 7 0111 0100
communication g | 1000 ) e
9 1001 1101

Can be scaled to larger 10 | 1010 1111
numbers 1 1011 1110
12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000
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Text: ASCII Characters

= ASCII: Maps 128 characters to 7-bit code.
= both printable and non-printable (ESC, DEL,

http://www.asciitable.com/

00
01
02
03
04
05
06
07
08
09
Oa
Ob
Oc
od
Oe
0f

nul
soh
stx
etx
eot
eng
ack
bel
bs
ht
nl
vt
np
cr
so

si
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10
- 4 §
12
13
14
15
16
» G
18
19
la
1b
lc
1d
le
it

dle
del
dc2
de3
dc4
nak
syn
etb
can
em
sub
esc
fs
gs
rs

us

23
22
23
24
25
26
27
28
29
2a
2b
2c
2d
2e
27

|20 sp

- 0 d° W Ik

+ ¥ -

-~

30
31
32
33
34
35
36
37
38
39
3a
3b
3¢
3d
3e
< &

s WO OO0k WNEHEO

A~

'\JV

40
41
42
43
44
45
46
47
48
49
4a
4b
4c
4d
de
4f

OZRHPHEARgHEZQ@RHREHUAK P

50
51
52
53
54
55
56
Ly
58
59
5a
5b
ac
5d
S5e
. o

>= S~ NHK MSgOH®O»XWOW
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61
62
63
64
65
66
67
68
69
6a
6b
6c
6d
6e
6f

OB B RPFUPFFITO HODO Q0 0O O

...) characters

70
o §
72
73
74
g -
76
77
78
79
Ta
7b
ia
7d
Te
7f del

!~ —~ NN X & 8 0 hR QT
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Boolean Algebra and Logic Gates



A\

Describing Circuit Functionality: Inverter

e Basic logic functions have symbols

e The same functionality can be
represented with a truth table

e Truth table completely specifies outputs for all input
combinations

e This is an inverter Truth Table
e An input of 0 is inverted to a 1 ALY
e Aninputof 1isinvertedtoa0 0|1
A 110
Y
‘; / N\
Input Output

Symbol
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O} The AND Gate

e This is an AND gate Truth Table

e If the two input signals
are asserted (i.e. high) the 0 0 0
output will also be asserted. 0 1 0
Otherwise, the output will 1 0 0
be deasserted (i.e. low) 1 1 1

S
A B

' B
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@ The OR Gate

e This is an OR gate

e [f either of the two
input signals is
asserted, or both of
them are, the output
will be asserted

) o
B

>

G

UJlT\
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3k The NAND Gate

e The NAND gate is a combination of an AND gate
followed by an inverter

o NAND(A, B) — (A AND B)’

A —
D
B_

-l alo|lo|>»
~|lo|l=|o|®m

Ol = m|a| <

9/21/2020 COE211: Digital Logic Design




@ The Universal Property of NAND

You can implement any function using: NOT, AND, and OR.
They represent a logically complete set.

= You can use only NAND gates to implement the above three gates.
Therefore, NAND alone is a logically complete set.

9/21/2020

) X+Y

NOT X—[} X
w T
DS

Bs
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@ The NOR Gate

e A NOR gate is a combination of an OR gate followed
by an inverter

e NOR(A, B) — (A+B)’

m >
-<
ol ol »
- | ©

—t,
o
ol O O
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@ The Universal Property of NOR

= Similarly, you can use only NOR gates to implement NOT, AND, and
OR. Therefore, NOR alone is a logically complete set.

NOT X{D X
Y {D

OR ;{ o}”Y
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@ Exclusive-OR and Exclusive-NOR Circuits

Exclusive-OR (XOR) produces a HIGH output whenever
the two inputs are at opposite levels

snekanlDS
Aboi

- 20 o|>»
—~—o-=olw
o = 2 ofx

AB _ _

AB

| -

XOR gate symbols

(a)

x=A®B

A =AB+AB A &—
=1 +—ex=A®B
B B &——

(©

(b)
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(b Exclusive-NOR Circuits

Exclusive-NOR (XNOR) produces a HIGH output
whenever the two inputs are at the same level

A
A ) A BJ]x
\ AB 0 0 1
— B / o 1||o
1 of|o
1
x=AB+A"B-
B
AB
A
(a)
XNOR gate symbols
A x=A®B=AB+AB A &— x=A®B
=1 ™~ o
B B —
(b) (c)
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{2k XOR Function

XOR function can also be implemented with AND/OR

gates (also NANDs) .

>
o

] e

Ty

(a) With AND-OR-NOT gates

Ban

e

N

(b) With NAND gates

Fig. 3-32 Exclusive-OR Implementations
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. XOR Function

e Even function — even number of inputs are 1

e Odd function — odd number of inputs are 1

BC B BC B
i 00 01 11 10 A 00 01 11 10
0 1 1 0 1 1
Al 1 1 Al 1 1
C C
(a) Odd function (a) Even function
F=A®B®C F=(A®B®C)

Fig. 3-33 Map for a Three-variable Exclusive-OR Function
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\-f

Describing Circuit Functionality: Waveforms

Waveforms provide another approach for
representing functionality

Values are either high (logic 1) or low (logic 0)

Can you create a truth table from the waveforms?

OR:x+y

NOT:x’

9/21/2020

0 1 1 | 0 0 ANGGats

X y f
0o o0 [ 1 1 0

0 0 0
0 0 1 0 0 0 1 0
0 1 1 1 0 A 0 0

1 1 1
1 0 0 | 1 1
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@ Consider Three-input Gates

A B C X=A+B+C
0 0 0 0
3 Input OR Gate o 0 1 1
A x=A+B+C 0 1 0 1
B 0 1 1 1
C 1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
1
Ao
00— - A
[ o ®
[ [
[ o
| C
o' i :
0 — i
| :I :
1 ' ' Qutput
ouT [
i
|

Y

Time
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@ Boolean Algebra

e Useful for identifying and minimizing circuit
functionality

e |dentity elements
> a+0=a
> a*1=a
e 0is the identity element for the + operation
e 1 is the identity element for the * operation

e The Complement: for every element ‘a’, there exists a
unique element called a’ (or a) (complement of a) such

that :
> at+a=1
> a<a=0
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0k George Boole (1815 - 1864)

= Father of Boolean algebra

= Boole’s system (detailed in his An Investigation of the
Laws of Thought, on Which Are Founded the
Mathematical Theories of Logic and Probabilities, 1854)
was based on a binary approach, processing only two
objects - the yes-no, true-false, on-off, zero-one
approach.

= Surprisingly, given his standing in the academic

community, Boole's idea was either criticized or
completely ignored by the majority of his peers.

= Eventually, one bright student, Claude Shannon
(1916-2001), picked up the idea and ran with it.
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© 2006 Pearson Education, Inc., “Digital Fundamentals™, 9/e by Floyd

@ Laws of Boolean Algebr

= Commutative Law of ORing:
A+B=B+A

A B
:Dfm-b’ = B+A
B A

= Commutative Law of ANDing:
A.B=B.A

., G
)P*ABE1 BA
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= Associative Law of ORing:
A+(B+C)=(A+B)+C

A
A+(B+C)
B
: B+C
C

= Associative Law of ANDing:

A

i e

)

C —

9/21/2020

C

© 2006 Pearson Education, Inc., “Digital Fundamentals™, 9/e by Floyd

@ Laws of Boolean Algebra (contd)

A
A+ B
B
C (A+B)+C

A.(B.C)=(A.B).C

) s

B_....._._

&

}E

B

B

COE211: Digital Logic Design
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© 2006 Pearson Education, Inc., “Digital Fundamentals™, 9/e by Floyd

@ Laws of Boolean Algebra (contd)

= Distributive Law:

e Note: To simplify notation, the « operator is frequently omitted.
When two elements are written next to each other, the AND (¢)

operator is implied

A(B + C) = AB + AC

A

B AB
‘> 1 ™
o £

)— AC

C

X=A(B + C) X =AB +AC
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© 2006 Pearson Education. Inc., “Digital Fundamentals™, 9/e by Floyd

@ Rules of Boolean Algebra

1.LA+0=A4A T A A=A
2.A+ 1= 8. A:A=0

3.A-0=0 9. A=A

4. A-1=A 10. A+ AB = A

5. A+tA=A 11. A+AB=A+B

6. A+A=1 12. A+ B)A +C) =A+ BC

9/21/2020 COE211: Digital Logic Design 20



@ Rules of Boolean Algebra contd

= Rulel

pmelp 3

X:! &=
0 {}:D—X . 0 111
1 011
X=A+0=A ] 1
OR Truth Table

= Rule 2

A=1 A=0 A B|X
! i 0 1|1
1 i
X=Asl=1 1 %
OR Truth Table
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@ Rules of Boolean Algebra contd

= Rule 3

A=1 — .-1:{)———3—
:)_ X=0 X=0
O =i ! Resrmas

X=A*0=0

- =0 Oo|P
- O = O|mM
- oo o|X

AND Truth Table

A=0 — Sk B .
| ] B e

- = o Oo|P
- o —=Oo|m
- oo o|X

AND Truth Table
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@ Rules of Boolean Algebra contd

= Rule 5
i =0 A=1] B AL
\—[l \:l

17 011

T 111

X=A+A=A
OR Truth Table

= Rule 6

—— ——
I I

-

I
>
I I

b

I\
===
- o —=o|D
- oo

OR Truth Table
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@ Rules of Boolean Algebra contd

= Rule 7
A=0 A= ] ]
g I o e D S
A= A=} '
X=A*A=A
= Rule 8
=1 ) 1=0
X=10 _)— X =0
A=0 BR Wsmesn
X=A*A=0(
9/21/2020 COE211: Digital Logic Design

- = o o|k
- o —=0|m
- o o o|X

AND Truth Table

- =0 O|P

B
0
1
0
1

- o o o|>X

AND Truth Table
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© 2006 Pearson Education, Inc., “Digital Fundamentals™, 9/e by Floyd

@ Rules of Boolean Algebra contd

= Rule 9

A= 5 A=0
A=0 A=0 A=l A=1

A=A

= Rule 10 (the absorption rule): A + AB = A

TR R ERTRRRER I
0 0 0 0
0 1 0 0 o=
I 0 0 I l
] 1 1 I : straight connection
T equal f
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© 2006 Pearson Education, Inc., “Digital Fundamentals™, 9/e by Floyd

@ Rules of Boolean Algebra contd

= Rulell: A+AB=A+B

0
0
1
1

ik = S o PR e

OO O

B

RO
0 0 .
| |
| I

|
] pess

| 1

L— equal —T

= Rulel12: (A+B)(A+C)=A+BC

-

———— O OO Q

9/21/2020

C
0
1

0
]
)

—

1
0
1

0
0

1
1
1
1
1
I

0
I
0

I XY ST X X AT

0 0 0
0 0 0 c

1

]
0 1
0 1 e _—
0 1 B -—D_’_D
| I o=
}

equal
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De Morgan’s Theorems

(by Augustus De Morgan (1806 - 1871), an English mathematician and logician)

-

AB=A+B | =9 >—
RBRS o -
General:

A.B.C.D=A+B +C+
A+B+C+D=A.B.C.D
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@ De Morgan’s Theorems Example

9/21/2020

(A.B+C)(A+B.C)=
(A.B+C) +(A+B.C)=
(A.B.C)+(A.B.C)=
(A+ E) C+A.(B

(')I

)=

O |

_I_
+A.

| 2>
Ol O
+ o+
W
Ol O
_I_

> | J>|
o] Um
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@ Converting AND to OR

= Using De Morgan’s Theorems, AND can be converted to OR (with some
help from NOT)

= Consider the following gate:

She
B« A-B
To convert AND to OR

A-B|A-B (or vice versa),
invert inputs and output.

A B
00
0 1
1 0
1 1

DOI—*I—*]>|
O = o = |

o O O =

Same as A+B
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© 2006 Pearson Education, Inc., “Digital Fundamentals™, 9/e by Floyd

@ Standard Forms of Boolean Expressions

= The sum-of-product (SOP) form
Example: X = AB + CD + EF

= The product of sum (POS) form
Example: X = (A + B)(C + D)(E + F)
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Sum-of-Products Expression

= A /iteralis a variable or the complement of a variable.
Examples: X, Y, X, Y

= A product termis a single literal or a logical product of two or more
literals. Examples: Z, W.XY, XY.Z, W.Y.Z

= A sum-of-products (SOP) expression is a logical sum of product terms.

Example: 7, w.x.y+X.Y.Z+ W.Y.Z )
") :D
L
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= Every SOP expression
can be realized by a
two-level circuit
containing AND
gates followed by
an OR gate

> < X

N<IZE N



\Y -
F SOP With NANDs
« ASOP expression canbe A7 )__
implemented with only B —
NAND gates: C _}
D —

!

A_

B —

C }

D—f :

From De Morgan’s

; Theorems

A_.

B —— }

C —

D—
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@ Function Representation Conversion

e Need to transit between a Boolean expression, a
truth table, and a circuit (symbols)

e All three formats are equivalent
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@ Minterm

= For each truth-table row a product term can be defined
that evaluates to 1 only when the inputs have the
values listed in that row.

= If the product term contains each input variable exactly
once it is called a minterm

Row A B & Minterm
O 0 O © A.B.C
1 0 o0 1 A.B.C
2 @ I B A.B.C
3 0 1 1 A.B.C
4 1 0 0 A.B.C
5 1 o0 1 A.B.C
6 1 1 0 A.B.C
T 4 4 1 A.B.C
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W

of From Truth Table to Boolean Expression

= Any logic function can be expressed algebraically by taking the OR
of all those minterms corresponding to the truth-table rows for
which the function produces a 1 output.

Example: Majority detector.

Row A B & Minterm R

O 0O 0 0 A.B.C 0

1 0 0o 1 A.B.C 0 - = =

5 @& 4 6 =~ 0 R=A.B.C+ A.B.C+ A.B.C+ A.B.C
3 0 1 1 A.B.C e

4 1 0 0 A.B.C 0

5 1 0o 1 A.B.C 1

6 1 1 o0 A.B.C 1

7 4 1 1 A.B.C 1

= Alternate forms:
R=m;+m;+ mg+m,
R=z(3l’5f6!7)
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@ Converting to a Circuit

e Number of 1’s in truth table output column equals
AND terms for Sum-of-Products (SOP)

X yz G
"0 0 00
0 0110 !
01010 DL .
0 11/[1 4 >>—'
1 00]0 1 -—DT
1. 0110 +—1 N
1 10 |1 i
1 111
AL
X y z

G =xyz + xyz' + X'yz
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@ Canonical Form of a Function

= A form is canonical if representation of a function in this
form is unigue.

= Examples:
= [ruth table representation of a function.
= Sum of minterms representation of a function.
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@ Boolean vs. Ordinary Algebra

m Differences

= Distributivity of + over « holds for Boolean, but not for
ordinary algebra

X+(y *zZ) = (x+y) * (X+2)

= Boolean algebra does not have inverse elements for
+ Or-e
Thus, no subtraction or division operators

= Complement is not defined in ordinary algebra
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@ Overview

= Introduction to Karnaugh Maps

= Karnaugh Maps Rules and Methods
= Two and Three-Variable K-Maps

= Four-Variable K-Maps

= Simplification Techniques

= Don't Cares Conditions
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@ Karnaugh Maps

e Alternate way of representing Boolean functions
Each row in the truth table is represented by a square

Each square represents a minterm

e Easy to convert between truth table, K-map, and SOP

Un-optimized form: number of 1's in K-map equals number of
minterms (products) in SOP

Optimized form: reduced number of minterms
F =2(my,m,) = Xy + XYy’

y X y |F

N0 1 N o 1 ° 01
0| xy'| xy O 1] 1 (1) (1) (1_)
x| 1| xy'| xy llo| O 1 1 lo
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@ Karnaugh Maps (cont'd)

e A Karnaugh map is a graphical tool for assisting in the
general simplification procedure

e Two variable maps

B B
A 01 A 01 _ _
OO 5.7 00[1| F=AB +AB +AB
11(0 111
e Three variable maps '33 % E
BC 00 1|1
AN\ 00 01 11 10 gi (1) é
odof[1][0]1 A RAE
11(1(1|1 11 01
1 1 1 1

F=ABC +ABC +ABC + ABC + ABC + ABC
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@ Rules for K-Maps

e We can reduce functions by circling 1's in the K-map

e Each circle represents minterm reduction
e After circling, deduce a minimized AND-OR form

Rules to consider

e Every cell containing a 1 must be included at least once

e The largest possible “power of 2 rectangle” should be used
e Use the smallest possible number of rectangles

9/27/2020 COE211: Digital Logic Design 5



@ Karnaugh Maps Examples

e Two variable maps

B
A

01

00

1

11

0

F=AB+AB

o
= O o

1
1]| F=AB +AB +AB
1)| F=A+B

e Three variable maps

BC
A

00 01 11 10

00]1

01

11

1

1

1

F=A+BC +BC

F=ABC +ABC +ABC + ABC + ABC + ABC

9/27/2020
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Karnaugh Maps Examples (conta)

yz : A . XY
* 00 01 11 10 /
FIGURE 3.4 Map for Example 3.1, m, m, m, m, %
Fx; ¥, 2) = (2, 3,4, 5) = xy + xy’ 0 1 1
?ﬂ4 Hls HI? me
¥4 1 1 1
/ j
yz . 1 xy' .
y'z' X 00 01 1l 10 , PO ——
\ my, n, my 1, yz
o1 1
W™ s > s FIGURE 3.6 Map for Example 3.3, F(x, y, 2)
xy1 /1 1 1 =3(0,2,4,5 6) =2 +xy
;.
xy

9/27/2020 COE211: Digital Logic Design 7



@ Karnaugh Maps Examples (conta)

b b

a 0 1 a 0 1
0/ 0]/ o|@d[®
10|\ 1/0]0
bc bc

a \._00 01 11 10 a \._00 01 11 10
ojolo|ilo 0/ 0[01]1)
AR 110fo[\1]1)

1. Circle the largest groups possible
2. Group dimensions must be a power of 2
3. Remember what circling means!

9/27/2020 COE211: Digital Logic Design 8
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8 K-Maps of 3-variable XOR Function

e Odd function — odd number of inputs are 1

e Even function — even number of inputs are 1

BC B BC B
i 00 01 11 10 A 00 01 11 10
0 1 1 0 1 1
Al 1 1 Al 1 1
C C
(a) Odd function (a) Even function
F=A®B®C F=(A®B®C)

Fig. 3-33 Map for a Three-variable Exclusive-OR Function
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@ Example using 1-bit Adder

Cin A B Cin|S | Cout
l 00 O0|0] O
00 1|1/ O
A—> 8 } ? [1) (13 How to use a Karnaugh
Adder [—S 10 ol1l o Map instead of the
10 1|0| 1 Algebraic simplification?
11 00| 1
11 1 1] 1
Cout '

S = AB'Cin + A'BCin” + A'BCin + ABCin
Cout = A'BCin + A B'Cin + ABCin" + ABCin

= A'BCin + ABCin + AB'Cin + ABCin + ABCin’ + ABCin
= (A" + A)BCin + (B’ + B)ACin + (Cin" + Cin)AB

= 1'BCin + 1* ACin + 1 AB

= BCin + ACin + AB
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@ Example using 1-bit Adder oo

Cin
l A B Cin| S | Cout
00 0 O 0 <+«
& 0 0 1 1 0 <«
’ f—
Adder |—S g :: {1) (1) 2 —
B— 10 01| 0 «—
10 1|0 1 —
l 11 0|0 ] —
I_L
olol1]o Now we have to cover all the 1s in the
Karnaugh Map using the largest
A{ D(1]1]1 rectangles and as few rectangles
—_— as we can.
Cin

Karnaugh Map for Cout

9/27/2020 COE211: Digital Logic Design 11



@ Example using 1-bit Adder oo

Cin _
A B Cin|S | Cout
00 O /[0| o
A 00 1 |1 0
T 1 1
Adder [—S 8 1 ‘1) 0 ‘1)
B— 10 0 /1| o
10 1 /0] 1
11 0 /0] 1
Cout 1 1 1 1 1
,_Q_\ Now we have to cover all the 1s in the
Of([1]/ O Karnaugh Map using the largest
rectangles and as few rectangles
A{ 0 U—» 1)1 as we can.
= - _
Cin Cout = BCin + AB + ACin

Karnaugh Map for Cout

9/27/2020 COE211: Digital Logic Design 12



@ Example using 1-bit Adder (o)

Cin Can you draw the circuit diagrams?
l A B Cin| S | Cout
00 00 O
At 00 1 [1] o0
Adder [—S 8 :: ‘1) ‘1) ‘1]
B— 10 0 (1] 0
10 1 |0] 1
l 11 0 |0] 1
Cout 11 1 1 1
B
—
0 0
A{{@ o |@] o
Cin S = ABCin + A B Cin + ABCin + ABCin
Karnaugh Map for S No Possible Reduction!

9/27/2020 COE211: Digital Logic Design 13



W

8 Karnaugh Maps for 4-Input Functions

e Represent functions of 4 inputs with 16 minterms
e Use same rules developed for 3-input functions

¥z y
N 00 01 11 10

00 |w'x'y'z'|w'x'y'z| w'x'yz |w'x'yz’
mgo mj ms3 ma

01 |w'xy'z | wxy'z | w'xyz | w'xyZ’

11 | wxy'z' | wxy'z | wxyz | wxyz’

mi2 mis3 mis miyy

]{] H}xf}}ﬂzf w'rﬂyfz wx!-yz w'rﬂ}}zf
mg mg miy i

<

(a) (b)

Fig. 3-8 Four-variable Map

9/27/2020 COE211: Digital Logic Design 14



@ Karnaugh Map: 4-Variable Example

F(A,B,C,D) = £m(0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15)
ITFTrTE D 'Y 1

F - C+ A'BD'*' BlDJ

9/27/2020 COE211: Digital Logic Design 15



@ Design Examples

00 01 11 10 00 01 11 10 00 01 11 10

01 o |1 |(1)] 1 On 1]l o[ of o Yol o] o] o

Of o] o |l1 | 1 Ot o | 1| o] o Ol 1]l o | of o
mlof| of[o] o mfo| o] 1]] o il )l 1] o [Ct

A —— i
wl o | o |[1\| o w|o | oo 1 wllt | 1)] o | o

K-map for LT K-map for EQ K-map for GT
LT= A°'C+A'B'D+B'CD
EQ =AB'C'D' + A'BC'D + ABCD + AB'CD'
6T= AC +BC'D' +ABD
Can you draw the truth table for these examples?

9/27/2020 COE211: Digital Logic Design 16



{3k Physical Implementation

Step 1: Truth table

ABCD .
Step 2: K-map
.E? ?07 ?07 E? Step 3: Minimized sum-of-products
Step 4: Physical implementation with gates

EQ :

1 0 0 0

0 1 0 0

0 0 1 0

A

0 0 0 1

K-map Dfor' EQ

9/27/2020 COE211: Digital Logic Design 17




@ Karnaugh Maps: Don't Cares

e In some cases, outputs are undefined

e We “don't care” if the circuit produces a0’ or a ‘1’

e This knowledge can be used to simplify functions

CD

c

AB

00 01 11 10
00 e ]| x|
01 + |+ | x|
SIEHEBE
].OOXOO

A

9/27/2020

- Treat X’s like either 1's or 0’s
- Very useful
- OK to leave some X's uncovered
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@ Don‘t Care Conditions

e In some situations, we don't care about the value of a
function for certain combinations of the variables

these combinations may be impossible in certain contexts

or the value of the function may not matter when the
combinations occur

e In such situations we say the function is incompletely
specified and there are multiple (completely specified)
logic functions that can be used in the design

SO we can select a function that gives the simplest circuit

e When constructing the terms in the simplification
procedure, we can choose to either cover or not cover the
don't care conditions

9/27/2020 COE211: Digital Logic Design 19



@ Don't Cares Examples

CD

AB
00

01
11
10

—_

1

0

01
1

)

=

1
0
1

1

=% |

X

4 '
NEREE

0

a

1

F=A'C'D+B+AC

Alternative covering:

CD
00 01 11 10

AB
00

01
i
10

0

1

X

X

0
x

1]

1)

X

0

1
1

9/27/2020

F=A'B'C'D+ABC'+BC+AC

COE211: Digital Logic Design
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@ Don‘t Cares Examples (cont'd)

f(A,B,C,D) = £m(1,3,5,7,9) + d(6,12,13)

f=AD + BCD without don't cares
fF=AD+CD with don't cares
C
by using don't care as a "1"
— T / a 2-cube can be formed
o !l LIl x rather than a 1-cube to cover
" =P this node
A X X 0 0
o |1 |o] o don't cares can be treated as
1s or Os
. depending on which is more
advantageous

9/27/2020 COE211: Digital Logic Design 21



@ Definition of Terms

e Implicant
Single product term of the ON-set (terms that create a logic 1)

e Prime implicant

Implicant that can't be combined with another to form an implicant
with fewer literals

e Essential prime implicant

Prime implicant is essential if it alone covers a minterm in the K-
map

Remember that all squares marked with 1 must be covered
e Obijective:
Grow implicants into prime implicants (minimize literals per term)

Cover the K-map with as few prime implicants as possible

(minimize number of product terms)
9/27/2020 COE211: Digital Logic Design 22



@ Examples to Illustrate Terms

C
6 prime implicants:

0 ‘X—_l‘ 0
——¢ | ABD', AD, AC, A'BC', CD, BC'D'
()L ]l s e X el '\
" ‘ I essential
l_ 0 1 1 ‘
g 1@ ‘___1‘ minimum cover: AC + A'D + BC'D'
D
7__7C
5 prime implicants: o | o |1 ] o
BD, ABC,AC'D,A'BC',A'CD ——— G S
——"®
essential e [l ] )
minimum cover: 4 essential implicants ° i‘ i
D

9/27/2020 COE211: Digital Logic Design 23



@ Prime Implicants

Any single 1 or group of 1s in the Karnaugh map of a
function F is an implicant of F.

A product term is called a prime implicant of F if it
cannot be combined with another term to eliminate a

iable.
Vaifigtle If a function F is represented by
C this Kgrnaugh Map. Whi;h of the
following terms are implicants of
Example: 1 1 1 F, and which ones are prime
implicants of F?
1|1
B (a) ABC Implicants:
i B (b) BD (a)(@)(d)(e)
1N (c) AB'CD | —
(d) AC Prime ;mpllcants.
D (e) ABD’ (d)(e)

9/27/2020 COE211: Digital Logic Design
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@ Essential Prime Implicants

A product term is an essential prime implicant if there is a
minterm that is only covered by that prime implicant
The minimal sum-of-products form of F must include
all the essential Erime implicants of F

CD CD C
AR 00 01 11 10 AB 00 01 11 10
00] 1 1 00| 1 1) 1
01 | ] : 01 1 1
| B B
. 1
11 1 1 | 11 1 1
A : A
10| 1 1 10| | 1 | | 1|
D D
(a) Essential prime implicants (b) Prime implicants CD, B'C
BD and B'D’ AD, and AB’

Fig. 3-11 Simplification Using Prime Implicants



Summary

Karnaugh map allows us to represent functions with new notation

Representation allows for logic reduction
Implement same function with less logic

Each square represents one minterm

Each circle leads to one product term

Not all functions can be reduced

K-maps of four literals were considered (Larger examples exist)
Don't care conditions help minimize functions

Result of minimization is a minimal sum-of-products

Result contains prime implicants

Essential prime implicants are required in the implementation

9/27/2020 COE211: Digital Logic Design 26
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@ Outlines

= Introduction
= Combinational Circuit Analysis
= Combinational Circuit Design
= Binary Adders and Subtractors
= Binary Decoders and Encoders
= Magnitude Comparator
= Binary Multiplexers
= Three-state Gates
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@ Introduction

Digital Circuits have two types of circuits:

1. Combinational Circuits
= Qutputs depend on
the LS Only S — 7| Combinational
» Memoryless circuits g f" circuit

2. Sequential Circuits s —

= Current outputs depend on the inputs and the
previous state (outputs).

= Use memory to store the previous state.

L';;}i}ts

Inputs ——~ o > Qutputs
Combinational
circuit

-
-

Memory
elements

Y

3/9/2020 COE211: Digital Logic Design 3



@ Introduction (Cont.)

Combinational Circuits:

= Combinational Circuit analysis:

»In the analysis we are interested in determining
the function of a given combination circuit.

= Combinational Circuit design:

»In the design we are interested in developing a
combinational circuit based on a given function.

3/9/2020 COE211: Digital Logic Design



Combinational Circuit Analysis
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@ Combinational Circuit Analysis

Circuit analysis can be achieved by either one of
the following two methods:

= Determining the output functions as algebraic
expressions.

= Determining the truth table of the output functions.

3/9/2020 COE211: Digital Logic Design 6



@ Circuit Analysis steps

1. Label all gate outputs with symbols.
2. Determine Boolean function at the output of each gate.
3. Express functions in terms of input variables

4. Simplify

s Example: Find the output function of the following circuit.

i T2 - (X—.I-]_)r
Step
1 e (xy)} F=(T,T,)
otep; R0y

Step;  f = (T,T3) = ((XTy) (YT1))" = (XT)+(yTy) = x(xy)+y(xy)’
= X(X+Y)+y(X+Y) = xy’ + Xy = x Dy

3/9/2020 COE211: Digital Logic Design 7



i Solution using Truth Table

. T,
>

X Ly T=() | B=0T) | T=(yT) | f=(T,T))"
0 0 1 1 0

I'—‘OI'—‘D—‘

0 1 1 0 I
1 0 1 1 1
1 1 0 1 0

3/9/2020 COE211: Digital Logic Design



Y Example 2: Find the functions of the
“®* following Circuit using Truth Table

)%
— _D— F
j— .

Y

F, F T, T, T; F

uﬁw

=l = =R s
R OR)RO=R OO 'a)
el = = = -
OO O = O =
= e e e = = O
RO QO OO
OO RRORRREPEO
= R Q= SO

3/9/2020 COE211: Digital Logic Design



@ Exercise

What are the output functions £ and 5 of
the following logic circuit?

A— T\ T

c— _D—f
- D=

- D

I~ F

e |

D

Education, publishing as Prentice Hall

3/9/2020 COE211: Digital Logic Design 10
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Combinational Circuit Design
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@ Design of Combinational Circuits

Four main steps in designing a
combinational circuit:

1. Determine the number of inputs and
outputs and give them symbols.

2. Derive the related Truth Table.

3. Simplify each output.

4. Draw logic diagram and verify
correctness.

3/9/2020 COE211: Digital Logic Design
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@ Design of Combinational Circuits (Cont.)

Example 1: Design a combinational logic
circuit that detects odd inputs which are in the
rang from O to 7.

Solution:
Step 1: 3 inputs (A, B, and C) and ?l;:?n

0

one output (F). 00 1 1

Step 2: Truth table OB S8 B
- 01 1 1

Step 3: Simplify aec 00 01 11 10 ;1 ¢ o o
O FERAEERE 1 o0 1 1

1 o0 (1 1| o FEENEGEG

1 F

F=C

3/9/2020 COE211: Digital Logic Design



@ Design of Combinational Circuits (Cont.)

Example 2: Develop a combinational circuit
that converts a BCD digit into a Excess-3 code.

Solution:
A[B|C|D|w/x|y|z
850 G

Step 1: gliol o A
= Inputs: BCD digit 0 [0)10 L] \a]L 6|0
(4 inputs: A, B, C, D) g kal M No| o) Y fo

= Qutputs: Excess-3code 0 0 110110
(4 outputs: w, x, y, z).  FOIRLIROTEOIRONRENTE

g R EaN e il o (e

0| el e e g

Step 2: Truth table gl N L e
IR s N TR

RN T

3/9/2020 COE211: Digital Logic Design



@ Example 2 (Cont.)
Step 3: Outputs’ Simplification
asxeo 00 01 11 10 asxe0 00 01 11 10

W 0 0 0 0 o0 o [1]1] 1
01 I NER 01 0| ot ar| e
11 x X x| X 11 X X X X
10 [EENINENE 10 ol
w= A+ BC+ BD x = B'C +B'D +BC'D’
asxeco 00 01 11 10 asc0 00 01 11 10
00 [SIRNEG 0 00 BiNBCHEGEBITN
01 1 0 01 IS ol
11 X X 11 X | ¥ | X X
10 1 0 X X 10 _1 g X X
y = CD'+ CD Z=D

3/9/2020 COE211: Digital Logic Design



@ Example 2 (Cont.)

A B

C D Step 4: Circuit Drawing

| ]
b 4

T
) 4

T
) 4

w=A+BC+BD

[ 2

) —D—W
D
D x = B'C + B'D + BCD’
B I
} y=CD + CD’
— Y
) I

3/9/2020
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Binary Adders and Subltractors
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@ Half Adder

Add two binary numbers
X,y — single bit inputs

S — single bit sum

C — carry out

Half Adder
X y C S
0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

x [—
§h—

et
¥

y_

)
ey

Dec Binary
1 1
+]l +1
2 10

(a)S=xy' +x'y
C=xy

\
| S
]

B

bB)S=xBy
C=uxy

3/9/2020 COE211: Digital Logic Design



£} Muttiple-bit Addition

Consider adding a 4-bit number to a 4-bit number:

(single-bit adder are used for each bit position)

Ay Ay Ay A B; B, B, B
A 0101 B O111
1 1 1 C. C'
A 0101 e
B 0111 B
110 0 g

i
Each bit position creates a sum and carry

3/9/2020 COE211: Digital Logic Design 19



Full Adder

y
; ; yz , A ,
Full adder includesacarry-inz N\ o o "1 10
0 (i 1 1 3 2 1
Full Adder
x y z]|cC s xi1f 1 | I
0 0 0|0 0 2
0 0 1 0 1 ot roor 't
0 1 o0lo 1 S=x'y'z+x'yz' + xy'z' + xyz
0 1 1 1 0 yz ! : :
1 0 010 1 . 00 01 11 10
1 0 1 1 0 m, m "y m,
1 1 0|1 o0 0 %
1 1 ]- 1 l HI4 m5 m? J'?I'h
x11 1 1 1

ol

Z

C=xy+xz+yz

3/9/2020 COE211: Digital Logic Design 20



@ Full Adder (cont.)

.r:
5
z

-
S

x —
' hY
z.‘_-.-

X
y
z

[ ]

3/9/2020

LT

y
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@ Full Adder (cont.)

The AND/OR representations of S and C can be
reduced into XORs as follows:

S:xryrz+xryzr +xyrzr_+_xyz
=z Yy +txy)+z’(xX'y+xy’) =z(@xOQy)+z'(x®@y)
=z2(@x@y)+27(x®y) =zOxDy

C=xy+Xx'yz+Xxy'z
= xy+z (x y+ xy’)
=xy+z(xDy)

Therefore, the final equations are:
S=z20xDy
C=xy+z(x@y)

3/9/2020 COE211: Digital Logic Design 22



@ Full Adder (cont.)

S=2@x®@y and C=xy+z(xDYy)

| »
xﬂ—"—‘ﬁ p 2By ) | \ x®y) D
¥ : ] i } )D — S
: | i / :
I I I
I Xy | } '
: ) i } etk (x®y)z+ay
I
I I ‘L

Therefore, the full adder can be constructed from two half adders
and an OR gate.

Half adder Half adder
r ___________________________
| | |
g e
B ' S
| |
I I
I
I
I I
|

— P.Ci+ G
|

e S e i e s i e s e s S e

3/9/2020 COE211: Digital Logic Design
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@ Full Adder (cont.)

Aj B
Putting it all together ¢ *

= Single-bit full adder
= Common piece of 1™+ AL |<7 ©i

computer hardware

Block Diagram +
Sj
Accordingly, 4-bit Adder can be constructed as:

By A, B, A, B, A By A C C
1+1 '

1
Y Y Y Y Y Y Y Y A
FA & FA G FA G FA g !
~ < ~ 0
+B.
Y ) Y \ 1
C4 53 S 2 S 1 SU

3/9/2020 COE211: Digital Logic Design 24



@ Subtractor

= Subtracting a number is similar
B3 BZ Bl BO>

» Perform 2’s complement
> Perform addition 2's complement

= Can we augment the adder with +" B3 B', By B,
2’'s complement hardware?
A; Bj A, B A, B Ao B
A4 \ 4 v Vv \ A /

‘ Adder | C,| Adder |C,| Adder |C;| Adder

C S; S, S So

3/9/2020 COE211: Digital Logic Design 25



@ Adder-Subtractor

= 4-bit Adder-subtractor (with overflow detection).

» When C,= 0, the circuit is used as an Adder.
»When C,=1, the circuit is used as a Subtractor.

B Aj B, A, B, Ay By A

Co

o —
A ]
=
= 2.

3 2 S] SO
—
\

3/9/2020 COE211: Digital Logic Design
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@ Overflow in 2's Complement Addition

When two values of the same sign are added:

= Result won't fit in the number of bits provided
= Result has the opposite sign

00 01 11 10 00 11
0010 0011 1110 1101 0010 1110
0011 0110 1101 1010 1100 0100

+2 +3 -2 3 2 -2

+3 o+ 3 6 -4 4

5 ¥ =23 7 -2 2
OFL OFL
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@ Summary

= Addition and subtraction are fundamental to computer
systems

» Create a single bit adder/subtractor
» Chain the single-bit hardware together to create bigger designs

= The approach is called ripple-carry addition
» Can be slow for large designs

= Qverflow is an important issue for computers
> Processors often have hardware to detect overflow

3/9/2020 COE211: Digital Logic Design
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Binary Decoder and Encoder

COE211: Digital Logic Design
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@ Binary Decoder

= Black box with ninput lines and 2" output lines.

= Only one output is a 1 for any given input.

N ——~ Binary — 27
INnputs —— Decoder —— outputs

3/9/2020 COE211: Digital Logic Design
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@ 2-to-4 Binary Decoder

D— Do = AJFB‘Ir

Ao — " DO .
N | )—D, =AB
B—1Decoder | P2

—— D3 ._D_D2=AB|
= D)—D, =AB

A B|D, D; D, D, é& 4&

00/1 0 0 O

01/0 1 0 0 A B

I B 6 B 1 % Note: Each output is a 2-variable
5 4 0 0 0 1 minterm (A'B', AB, AB' or AB)
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3-to-8 Binary Decoder

}Dnzfy’zi
— " DO
- > D
x| . 3; " Dy=x'y'z
3-to-8 | .
y — = x'yzr’
Decoder — b4 }DZ"-
z — — D5 B
— D6 _>*Dj=.r'y2
— D7 DC
X Yy z D0 Dl Dz D3 D4 DS D6 D7
0 0 0O]1 0 0 0 0 0 0 0 o
o 0 1/lo0 1. 0 0 0 0 0 O D_D“"
01 0/0 01 0 0O 0 0 O
01 1/0 0 0 1 0 0 O O } R
1 00/l0 0O 0 O 1 O O O
1 o01/l0 0 0 O O 1 0 O
1 1000 0 0 0 0 0 1 O D_ Gl
1 1 1/lo0 o 0o 0 0O O 0 1
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\

= 2-to-4 decoder with enable E
= Add enable signal (E)

= Note: using NAND Gates
makes only one 0 be active

if the enable E = 0.

A—1 2-to-4
Decoder

= 121
— - D2

— D3

3/9/2020

A P>

i Building a binary decoder with NAND gates

A B Dy D, D, Ds
1 X X 1 1 1 1
0 0 0 0 1 1 1
0 0 1 1 o | 1
0 | 0 1 | 0 1
0 | 1 1 1 1 1

>
-

COE211: Digital Logic Design



@ Use two 3-to-8 decoders to make 4-to-16 decoder

= The enable is used as the 4t line.

= In this case, only one decoder can be active at a time.

X *
3X8
Y ! decoder Bty
Z B E
w [
3X8
decoder D t0.Dys
E

3/9/2020 COE211: Digital Logic Design
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@ Implementing Functions Using Decoders

= Any n-variable logic function can be implemented using a
single n-to-2" decoder to generate the minterms.

OR gate forms the sum

The output lines of the decoder corresponding to the minterms
of the function are used as inputs to the OR gate

= Any combinational circuit with n inputs and m outputs
can be implemented with an n-to-2" decoder with /7 OR
gates.

= Suitable when a circuit has many outputs, and each
output function is expressed with few minterms.
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Example

Implement the function of the Full adder using a decoder.

Sum: S(x,y, z) =2 (1,2,4,7)

X yV z C S
0O 0 O 0 0
0 0 1 0 1
0O 1 O 0 1
0 1 1 1 0
1 0 O 0 1
i 9 1 1 0
1 1 0 1. O
L 31 3 1 1

Lame COL Y, 2) = 2£(3,5,6,7)

0_.

~N & W = W N

Note: if you have the function, you do not need to
construct the truth table.

3/9/2020
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@ Binary Encoder

= If the a decoder's output code has fewer bits than the
input code, the device is usually called an encoder.

e.g. 2"-to-n

= The simplest encoder is a 2"-to-n binary encoder
One of 2" inputs = 1
Output is an n-bit binary number

on o — n

Binary
Encoder

1nputs outputs
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8-to-3 Encoder

Truth Table of an Octal-to-Binary Encoder

Inputs Outputs

Db, D, D, D3 D; Ds Dg Dy X y z

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

D,

Dl —_— 1 zox D

| X=Dy+ DS e Dﬁ + D7

D, __I

D; aA} y=D,+D;+ D¢+ D,

D, Note: At any one time,
D ) only one input line has
Dy a value of 1.

D?

3/9/2020
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@ Encoder Application (Monitoring Unit)

= Encoder identifies the requester and encodes the value.

= Controller accepts digital inputs.

Alarm Contoller /

Signal Response
Machine 1

7
Machine 2 Machine
! 2 Code
I Controller >

Machine n

3/9/2020 COE211: Digital Logic Design 39



@ Summary

= Decoders allow for generation of a single binary output
from an input binary code.

= For an n-input binary decoder there are 2" outputs.
= Decoders are widely used with memory.
= Encoders can be used for data compression.
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Binary Magnitude Comparators
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@ Magnitude Comparator

= Compares two numbers: Aand B
> Result: A>B,A=8B,0rA<B

= Truth table entries for /#+bit numbers = 22" entries
» Impractical for design

= How can we determine that two numbers are equal?
» A; A, A A, and B; B, By B, are equal iff
> A;=Bs;and A, = B, and A, = B, and A, = B,

= New function: x; indicates if A, = B,
» x. =AB, + A'B; (X-NOR)
» Thus, (A = B) = X3 X, X; Xg
» What about A < Band A > B?
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@ Magnitude Comparator (cont.)

= A>B
» How can we tell that A > B?
> Look at MSB where A and B differ
vIfA=1andB=0,thenA > B
v If not, then A <B
» Assume n=4
» (A>B) = A;B5+x3A;, B + X3 %,A; B’y + X35 %, X, Ay B

= A<B
» The same as A > B but A and B are exchanged.
> (A< B) —_ A’3 B3 -+ X3 A’2 BZ + X3 X2 A,1 Bl + X3 X2 Xl AIO BO
Note: The comparasion must be started from MSB.
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@ Magnitude Comparator (cont.)

= (A<B) = A5 B+ x3A5 B, + X3%, A} By + X3 X, X; Ay By

As
X3
By

" (A=B)=X3%X; X -

@
[
ITT

[1

JO 00 ©

(A > B)

UQ@

(A =B)
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3/9/2020

Binary Multiplexers
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@ Binary Multiplexers

Select an input value with one or more select bits
Use for transmitting data
Allow for conditional transfer of data
Sometimes called a MUX

Example: 2-to-1 MUX

3/9/2020

_ a
o

5—»—[><F

COE211: Digital Logic Design
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@ Multiplexers (cont.)

= 4-to-1 Multiplexer I
» 4 input lines (I,, I, I, L,)

> 2 selection lines (S,, S,) "
> One output line (Y)

I,

Lo 1

> Function table
I
S1 S| Y
0 0| I
0 1) 1 Al A
1 O 12 S
1 1| I 5

3/9/2020 COE211: Digital Logic Design 47



@ Multiplexers (cont.)

= Quadruple 2-to-1 MUX "~

> 4-bit inputs
> 4-bit outputs

» one selection bit (5)

» Enable bit (£)

E S| OutputY
1 X | allOs

0 O | selectA

0O 1 | selectB

Function table

3/9/2020

Ay

Az

S

B

s
(select)

E

JUUU UUUU

— e —fpo—

(enable)

>

COE211: Digital Logic Design
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@ Implementing Boolean Functions with MUXs

= Example: Implement the Boolean function F (X, y, z)
>(1, 2, 6, 7) using 4 x 1 MUX.

y_
X —

So
Sy

0
1
2
3

4 x 1 MUX

> Set “data” input lines of multiplexer to function values

51 So
i vy z F
0 0 0 |0
0 0 1 1
01 0 |1
F 0 1 1 0
1 0 00
1 0 1 0
1 1 0 |1
1 1 1 1

» Connect input variable to “select” inputs

» Set the inputs of multiplexer.

3/9/2020
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@ Implementing a 4-Input Function with a MUX

= Example: Implement the Boolean function F(A, B, C, D)
=2(1, 3,4, 11, 12, 13, 14, 15) using 8 x 1 MUX,

i

A B C DJ|F

© 0 o 1|1 Lb=D
88}??11:1)
o 1 5 tlan=D
8::?813:0
138?314:0
SR T
1:8?:16:1
IRIRERI RN S

3/9/2020

L
B
A

D

COE211: Digital Logic Design

So
S
S>

~ O h B W N = O

8 X1 MUX
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Three-state Gate
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@ Three-state Gate

= Qutput: 0, 1, and high-impedance (open circuit)

= If the select input (E) is 0, the three-state gate has

no output
A X
E

No output if E is 1

E X
0 Hi-Z
1 A

3/9/2020 COE211: Digital Logic Design

Opposite true here/ E

] mi

Hi-Z
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@ Three-state Gate (cont.)

= Multiplexers can be constructed with three-state

gates.

= Two examples

B F\
Select I/l/
(a) 2-to-1-line mux
3/9/2020

Iy >
I P
I >—p
4 o
I |~
0
— 5,
Select 2% 4 1
So decoder 2
Enable EN
3

(b) 4-to-1-line mux

COE211: Digital Logic Design 53



@ Summary

= Magnitude comparators allow for data comparison
Can be built using AND-OR gates
- Greater / Less than requires more hardware than equality

= Multiplexers are fundamental digital components
Can be used for implementing logic functions
Useful for datapaths
Scalable

= Tristate buffers have three types of outputs
0, 1, high-impedence (2)
Useful for datapaths

3/9/2020 COE211: Digital Logic Design
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CHS5: Synchronous Sequential Logic
Part 1: Latches and Flip-Flops



A
!
@ So Far ...

- Logical operations which respond to of
inputs to produce an output

Call these circuits

. For example, we can add two numbers but:
No way to add two numbers, /7e77 add a third (a

operation)
No way to remember or store information after inputs have been
removed

. To do this, we need capable of storing

intermediate (and final) results

2/14



Y o
@ Sequential Circuits

Inputs —— Combinational > Outputs

circuit Flip

Next Flops
state : Prfs;ant

state
Timing signal
(clock)
Clock

a periodic external event (input)

» synchronizes when current state changes should
happen

» keeps system well-behaved

» makes it easier to design and build large systems

Clock

3/14



@ Storage Elements

= Binary storage device capable of storing one bit

= Latch = level-sensitive device

= Control signal: Enable

= State changes with input when enabled (e.g., when Enable = 1)

= Holds last input value when disabled (when Enable = 0)
Flip-flop = edge-triggered device

= Control signal: periodic Clock

= State of flip-flop can only change during clock transition

« Example: Flip-flops change on rising/falling edge of clock
Why change on an edge?

= Couldnt we change state while clock is 1?

= That would be a latch!

= Edge is moment in time, state is duration conditions

3/9/2020 COE211: Digital Logic Design 4



@ Level-sensitive vs Edge-triggered

= Latches are level-sensitive

(a) Response to positive level
= Flip-flops are edge-sensitive

( b) Positive-edge response

.

(¢) Negative-cdge response

3/9/2020 COE211: Digital Logic Design



@ Latchs

= Characteristics
= Can store one bit of binary information
= Level-sensitive devices, asynchronous

= SR Latch

= Named after functionality: S = set, R = reset
= Specification:
« Inputs: Sand R
« Outputs: Q and Q'
= SR Latch Operation:
= Q=1 and Q'=0 when in set state
= Q=0 and Q'=1 when in reset state
= Inputs should be 0 unless pulse on S or R sets or resets latch

3/9/2020 COE211: Digital Logic Design



@ Cross-coupled Inverters

A stable value can be stored at inverter outputs

45

State 1 State 2



e
T

SR Latch with NORs
O—T—R(rcsu)

S R|lQQ
IV §
0 0|1 0 (afterS§=1.R=0)
1 0 1|0 1
0 0/0 1 (afterS=0,R=1)
0 ‘- S (set) 1 1,00
(a) Logic diagram (b) Function table

s Setand Reset are stable states
« If S=0and R=0, then state will not change by itself

o] b e >
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{0k Rs Latch with NANDs

e RS latch is made from two NANDs
e Sometimes called RS latch
e Usually S=1 and R=1

1 —_—
0 —|\ S (set)

S R|QOQ
— ) ] 2 1 o0lo 1
s 1 1/0 1 (afterS=1,R=0)
T g 111 @
1 ik
{ [ l 1 11 0 (afterS=0,R=1)
0 R (reset) Q 0 0 /11




RS Latches

R (Reset)

S (Set)

S (Set)

R (Reset)

(a) Logic diagram

—Q

(a) Logic diagram

S R|Q Q
1 01 O
Set state
0 0|1 O
0 1/0 1
o olo 1 Reset state
1 110 0 Undefined
(b) Function table
S R|Q Q@
g 1]/1 0
Set state
1 1(1 0
1 0|0 1
1 110 1 Reset state
0 0|1 1 Undefined

(b) Function table



N\

8 RS Latch with control input

e Avoid uncontrolled latch changes
® disables all latch state changes
e Control signal enables data change when C = 1

No change

No change

Q = 0; Reset state
Q = 1;set state
Indeterminate

c—9

—_—— = o 0
e
— o~ o X X

S ——— )
Q > S Next state of Q

(a) Logic diagram (b) Function table

Fig. 5-5 SR Latch with Control Input



@ D Latch

= How to remove state for S=1, R=17?

= Solution

= Just use one input pin D to indicate set or reset

= Enable bit (En) ensures that latch is only set when intended
En D

= D latch

= Inputs:
« D (data)
« En (enable)

s Circuit:

3/9/2020

D

En

COE211: Digital Logic Design

Next state of O

S

—_ A

No change
Q = 0 reset state

O = 1. set state

i

o

Q

———

12



@ D Latch in Operation

= Removes disallowed R,S combination
=« D latch forwards data while En=1

En D | Nextstate of Q
= D latch holds data when En=0 oy e
o change
1 0 Q = 0 reset state
1 1 Q = 1; set state
x, 0, 1 1,1,0
f’ r r
. I }' ‘l. }-. o = Q-l, 0,1
i1 L J
En . ,..-V.:'-'.'-H;": :: ..7
>’ P—l‘_ )’ l o=Q%10
: x',1,0 1,0,1

3/9/2020 COE211: Digital Logic Design



@ D Latch

e Z only changes when E is high X —D Q
e IfE is high, Z X z
E —iC
o °_ [T || L
¢ © | ]

e If E =0, the D latch stores data indefinitely
regardless of input D values

e Forms basic storage element in computers



@ Symbols for Latches

RS latch, based on NOR gates

e R’S’ latch, based on NAND gates

e D latch can be based on either NOR or NAND
e D latch, sometimes called transparent latch

SR SR D



A
@ Summary

Latches are based on combinational gates
(e.g. NAND, NOR)

Latches store data even after data input has been
removed

RS latches operate like cross-coupled inverters with
control inputs (S = Set, R = Reset)

With additional gates, a RS latch can be converted to a D
latch (1 stands for Data)
D latch operation is simple

When C = 1, data input D stored in latchand Q = D

When , data input D is ignored and Q = previous latch
value



Sec: 5.3

ﬁ\;E Seqguential Circuits: Flip Flops



@ D Latch - Summary

= D l|atch circuit

b —s lD [TD’ I ) n
-
D._

Next state of ()

No change
Q = 0; reset state
Q = 1; sel state

Y

\
(T
~oM | B

Ea ‘

:) 1.

>

= Data is stored while clock is high

g g B

= How can we build a flip-flop that stores on edge transition?

L L
or \ Y

3/9/2020 COE211: Digital Logic Design 18




@ Edge-triggered D Flip-Flop

s Construct D flip-flop from two latches:

y
D
D latch D latch

(master) (slave)
En En

D

o

Clk I'>°

= Primary latch:
= Reads value of D while CLK is high
= Is disabled when clock is low

= Secondary latch:
= Is disabled when CLK is high (i.e., holds previous value)
= Takes value from master on negative edge of clock

3/9/2020 COE211: Digital Logic Design



D CLK| | Q

@ Clocked D Flip-Flop

IIIIIIIIII




@ Positive and Negative Edge D Flip-Flops

e There exist positive and negative edge trigger D FF
e Bubbled C/ock (C) means negative edge trigger

D —D —
> C o——r —d>C o——
(a) Positive-edge (a) Negative-edge

Fig. 5-11 Graphic Symbol for Edge-Triggered D Flip-Flop

We may need other FFs to
synchronously set or reset the FF |
state -

and/or complement the previous

state Lo-Hi edge Hi-Lo edge



@ Positive Edge-Triggered J-K Flip-Flop

Created from D FF

CLK

Q Q

J
0
0
1
1

K

J

J=K=1 Q
D] )

>

CLK —{>C

(a) Circuit diagram

Fig. 5-12 JK Flip-Flop

K
0
1
0
1

Qo Qo
0 1

1 0
Q" Qo

(b) Graphic symbol



J: set, K: reset, if J=K=1 then toggle output

Clocked J-K Flip Flop

@ J Q ® J K CLK Q
0 0 f Qg (no change)
__;___L__ &—— > CLK 1 0 1 1
0 1 t 0
— K Q —=e 1 1 t Qg (toggles)

1

IR R
o} ] 1 1 1 [

a b c e f [s] i k — Time

I I | 1 |

R | i : : :
. . I . : l l

: I : 1 1 |
"o | i | : :

| : : : : |
. I I I 1 1 I

| I : : 1 I
1 — I : —_—

I |
| 1

2 Clear Toggle No Sét Toggle Toggle

change




@ Positive Edge-Triggered T Flip-Flop

e Created from JK or D F.F.

e =0 — No change
e T=1 —invert Q

(a) From JK flip-flop

T CLK|Q Q
0 Q Q
1 Q0" Qo
- 17 I
— o
—>C o———
—I>C N

(b) From D flip-flop

Fig. 5-13 T Flip-Flop

(c) Graphic symbol



@ Characteristic Table and Equation

D Q(t+1)
0 0
1 1

Q(t+1) = D

—J
1 o —T a—
K Q' o— —p Qp—
0 0 Qrt)
0o 11 o 0 | Q)
1.0 1 1 | Q)
1 1

Q(t+1) = JQ'(t) + KQ() O(r+1)=T0 +T°Q



@ Asynchronous Inputs

e J, K are synchronous inputs

Effects on the output are synchronized with the ¢/ <input
e Asynchronousinputs operate independently of the clock and

synchronous inputs

Set/reset the FF to 1/0 states

l PRESET

® J Q ®
—> CLK
— K QF—e

TCLEAH

PRESET| CLEAR

FF respanse

1 1
0 1
1 0
0 0

Clocked operation”

Q =1 (regardless of CLK)
Q = 0 (regardless of CLK)
Not used

“*Q will respond te J, K, and CLK



1
J.K
+5V PRE
®
l K 1
CLK
~—J PRE Qe 0
CLK &——C]> CLK o 1
- PRE
— K gQre 0

Asynchronous Inputs

. 1
CLR
0

CLR

Point

Operation

-0 o000

Synchronous toggle on NGT of CLK
Asynchronous set on PRE =0
Synchronous toggle

Synchronous toggle

Asynchronous clear on CLR = 0
"CLR over-rides the NGT of CLK

Synchronous toggle

e — —— o ——

e

i ——
o -—




@ Asynchronous Inputs

e Reset signal (R) is active low TD’T
R = 0 clears the output Q ></7
.

e This event can occur at any LQJ @
time, regardless of the value c¢L&— - I
of the CLK V(D;

) )
Resel
Delg—B  —« RCDIQQ
0 X X|0 1
CLK —C ,
R ¢ 1 To|o 1
Resel 1 i T1|1 B




-—

)

Parallel Data Transfer

e Flip flops store outputs from combinational logic

e Multiple flops can store a collection of data

D Q-‘ —-=_e Q-| = X
X . —OP>CLK  Q,—®
Combinational | Y .
|OgiC - D Q2 —e Q2 = Y
circuit
z -
—P>CLK Q,—=e
D Q;—®Q;=2"
1
TRANSFER Y -
0 o———(PDCLK Q;—=*

*After occurrence of NGT



@ Summary

Flip flops are powerful storage elements
They can be constructed from gates and latches!

D flip flop is simplest and most widely used

Asynchronous inputs allow for clearing and presetting the
flip flop output

Multiple flip flops allow for data storage
The basis of computer memory!

Combine storage and logic to make a computation circuit



