CHAPTER 3

MATLAB BASICS

WHAT WILL WE LEARN?

* What is MATLAB and why has il been selected (o be the ol of choice [or this
book?

* What programming environment does MATLAB offer?

What are M-files?

What is the difference between MATLAB scripts and functions?

* How can | get started with MATLAB?

-

31 INTRODUCTION TO MATLAB

MATLABE (MATrix LABoratory) is a dala analysis, protolyping, and visual-
ization tool with built-in support for matrices and malrix operations, excellent
graphics capabilities, and a high-level programming language and development
environment.

MATLAB has become very popular with engineers, scientists, and researchers in
both industry and academia, due to many factors, among them, the availability of rich
sets of specialized functions—encapsulated in toofboxes—for many important areas,

Practical Iinage and Video Processing Using MATTAR® . By Oge Marues,
2001 John Wiley & Sons, Inc. Published 20011 by John Wiley & Sons, Inc,

35

36 MATLAB BASICS

from neural networks to finances to image processing (which is the main focus of our
interest and will be discussed in Chapter 4).!

MATLAB has an extensive built-in documentation. It contains descriptions of
MATLAB's main functions, sample code, relevant demos, and general help pages.
MATLAB documentation can be accessed in a number of different ways, from
command-line text-only help to hyperlinked HI'ML pages (which have their online
counterpart in MathWorks's web site: http://www.mathworks.com).

MATLAB's basic data type is the marrix (or array). MATLAB does not require
dimensioning, that is, memory allocation prior to actual usage. All data are considered
to be matrices of some sort. Single values are considered by MATLAB to be 1x1
matrices.

The MATLAB algorithm development environment provides a command-line in-
terface, an interpreter for the MATLAB programming language, an extensive set of
numerical and string manipulation functions, 2D and 3D plotting functions, and the
ability to build graphical user interfaces (GUIs). The MATLAB programming lan-
guage interprets commands, which shortens programming time by eliminating the
need for compilation.

If you want to get started with MATLAB right away, this is a good time to try
Tutorial 3.1: MATLAB—A Guided Tour on page 44.

3.2 BASIC ELEMENTS OF MATLAB

In this section, we present the basic elements of MATLAB, its environment, data
types, and command-line operations.

3.2.1 Working Environment
The MATLAB working environment consists of the following:

o WATILAB Desktop: This typically contains five subwindows: the Command Win-
dow, the Workspace Browser, the Current Directory Window, the Command
History Window, and one or more Figure Windows, which are visible when the
user displays a graphic, such as a plot or image.

o MATLAB Editor: This is used to create and edit M-files. It includes a number of
useful functions for saving, viewing. and debugging M-files.

e Help System: This includes particularly the Help Browser, which displays
HTML documents and contains a number of search and display options.

In Tutorial 3.1: MATLAB--A Guided Tour (page 44), you will have a hands-on
introduction to the MATLAB environment.

In 2003. MathWorks released the Image Acquisition Toolbox, which contains a collection of functions
for image acquisition. This toolbox is briefly described in Section 5.3.2 and will not be explored in more
detail in this book.

BASIC ELEMEMTS OF MATLAR 37

TABLE 3.1 MATLAB Data Classes

Data Class Description

uints 8-Bit unsigned integers {1 byte per element)
uintle 16-Bit unsigned integers (2 bytes per element)
uint3z 32-Bit unsigned integers (4 bytes per element)

intsd 8-Bit signed integers (1 byte per element)
intlé 16-Bit signed integers (2 bytes per element)
int32 32-Bi signed integers (4 byies per element)

zingle Single-precision foating numbers (4 byles per element)
double Double-precision floating numbers (8 bytes per element)
logical Values are 0 (false) or | (true) {1 byte per element)
char Characters (2 bytes per element)

3.2.2 Data Types

MATLARB supports the data tvpes (or data classes) listed in Table 3.1.

The first eight data types listed in the table are known as numeric classes, A nu-
meric value in MATLAB is of class double unless specified otherwise, Conversion
hetween data classes (also known as typecasting) is possible (and often necessary).
A string in MATLAB is simply a 1 = n array of characters,

3.2.3 Array and Matrix Indexing in MATLAB

MATLAB arrays (vectors and matrices) are indexed using a |-based convention,
Therefore, a (1) is the syntax o refer to the first element of a one-dimensional array
aand £({1,1) isthe syntax to refer to the first element of a two-dimensional array,
such as the top left pixel in a monochrome image £. The colon (:) operator provides
powerlul indexing capabilities, as you will see in Tutorial 3.2 (page 46G).

MATLAB does not restrict the number of dimensions of an array, but has an upper
limit on the maximum number of elements allowed in an array. If you type

[z, maxsize] = computer

variable maxs 1 ze will contain the maximum number of elements allowed in a matrix
on the computer and version of MATLARB that you are using.

3.2.4 Standard Arrays
MATLAB has a number of useful, built-in standard arrays:
* zopros(m,n) creates an m = n matrix of zeros.

* ones (m, n) creales an m ¥ n matrix of ones,
* true(m,n) creales anm > nomatrix of logical ones.

i8 MATLAR BASICS

* false(m,n) creates an m ¥ n matrix of logical zeros.
* eye(n) returns an &= 1 deniiy marrix,
* magie (m) returns a magic square® of order m.

* rand(m,n} creales anm = n matrix whose entries are pseudorandom numbers
uniformly distributed in the interval [0, 1],

+ randn(m,n) creates an moxn matrix whose entries are pseudorandom
numbers that follow a normal (i.e.. Gaussian) distribution with mean 0 and
variance 1.

3.2.5 Command-Line Operations

Much of the functionality available in MATLAB can be accessed from the command
line (as can be seen in the first steps of Tintorial 3.2: MATLAE Data Structures on
page 46). A command-line operation is equivalent to executing one line of code,
usually calling a built-in function by typing its name and parameters at the prompt
[==). If the line does not include a variable to which the result should be assigned, it
is assigned to a built-in variable ans (as in answer). If the line does not end with a
semicolon, the result is also echoed back to the command window,

Considering the large number of available built-in functions (and the parameters
that they may take} in MATLAB, the command-line interface is a very effective
way to access these functions without having to resort to a complex series of menus
and dialog boxes. The time spent learning the names, syntax, and parameters of
useful functions is also well spent, because whatever works on a command-line (one
command at a time) fashion will also work as part of a larger program or user-defined
function. Moreover, MATLAB provides additional features to make the command-
line interaction more effective, such as the ability to easily access {with arrow keys)
previous operations {and save typing time). Successful command-line operations can
also be easily selected from the Command History Window and combined into a script.

3.3 PROGRAMMING TOOLS: SCRIPTS AND FUNCTIONS

The MATLAB development environment interprets commands written in the MAT-
LAB programming language, which is extremely convenient when our major goal is
to rapidly prototype an algorithm. Once an algorithm is stable, it can be compiled
with the MATLAB compiler (available as an add-on to the main product) for faster
execution, which is particularly important for large data sets. The MATLADB compiler
MATCOM converts MATLAB native code into C++ code, compiles the C++ code,
and links it with the MATLAR libraries. Compiled code may be up to 10 times as fast
as their interpreted equivalent, but the speedup factor depends on how vectorized the
original code was; highly optimized vectorized code may not experience any speedup
at all.

I\ magic squaAne 15 a square array in which the sum along any row, column, or main diagonal results in
the same value,

PROGRAMMING TOOLS: SCRIPTS AND FUNCTIONS 39

For faster computation, programmers may dynamically link C routines as
MATLAB functions through the MEX utility.

3.3.1 M-Files

M-files in MATLAB can be scripts that simply execute a series of MATLAB
commands (or statements) or can be functions that accept arguments (parameters)
and produce one or more ouiput values. User-created functions extend the capabili-
ties of MATLAB and its toolboxes to address specific needs ar applications.

An M-file containing a script consists of a sequence of commands to be interpreted
and executed. In addition to calls to built-in functions, scripts may also contain variable
declarations, calls to user-created functions {which may be stared in separate files),
decision statements, and repetition loops. Scripts are usually created using a text
editor (e.g.. the built-in MATLAB Editor) and stored with a meaningful name and the
.m extension. Once a script has been created and saved, it can be invoked from the
command line by simply lyping its name.

An M-file containing a funcition has the following components:

s Function Definition Line: Tt has the form

functien [outputs] = function_name{inputs)
The keyword functionis required. The output arguments are enclosed within
square brackets, whereas the input arguments are enclosed within parentheses,
If the function does not return any value, only the word function is used and
there is no need for the brackets or the equal sign. Function names must begin
with a letter, must not contain spaces, and be limited to 63 characters in length,

« HI Line Tt is a single comment line that follows the function definition line.
There can be no blank lines or leading spaces between the HI line and the
function definition line. The HI Tine is the first tex| thal appears when the user
Lypes
=» help funct il:uﬂ_n.a\.ﬂ'ua"L
in the Command Window, Since this line provides important summary informa-
tion about the contents and purpose of the M-file, it should be as descriptive as
possible.

* flelp Tewe: 1t is a block of text that follows the H1 line, without any blank lines
between the two. The help text is displayed after the H1 line when a user types
help function_name at the prompt.

s Function Body: This contains all the MATLAB code that performs computation
and assigns values to output parameters.*

* Comments. In MATLAB, these are preceded by the % symbaol.

Apdote that the prompt is different in the educational version of MATLAB (EDU==).

AFven though the MATLAB programming language inclodes 2 “returmn” command, it does nol take any
arguments. This is in contrast with ather programming languages that may use “return” followed by &
parameter as a standard way of returning a single value or a pointer (o where multiple values reside in
THRETIROFY.

a0 MATLAR BASICS

Here is an example of a simple function (raise_to_power) that will be used

in Tutorial 3.3 on page 53:

function =z raise_to_power [val, exgl

YRAISE_TO_PCOWER Calculate pawer aof a value

% 2 = ralse_to_power([val,exp) ralse val bto a power with value of exp
% and store 1t in =.

z = val 7 exp;

3.3.2 Operators

MATLAB operators can be grouped into three main categories:

» Arithmetic Operators. Perform numeric computations on matrices.

= Reladional Operators: Compare operands.

» Logfcal Operators: Perform standard logical functions (e.g.. AND, NOT, and
OR)

Since MATLARB considers a matrix and its standard built-in data type, the number
of array and matrix operators available in MATLAB far exceeds the traditional oper-
ators found in a conventional programming language. Table 3.2 contains a summary
of them. All operands can be real or complex.

Table 3.3 shows a list of some of the most useful specialized matrix operations
that can also be easily performed in MATLAB.

TABLE 32 MATLAB Array and Matrix Arithmetie Operators
MATLARE Function

Operator Name

*

Array and matrix addition

Array and matrix subtraction

Element-by-element array
multiplication

Matrix mulliplication

plus{a, b}
minus(a,b)
times (a, bl

mbimes{a,)

— Array right division rdivide{a,b)
Y Array left division ldivide{a,b)
! Matrix right division mrdivide{a,b)
1 Matrix left division mldivide{a,b)
i Array power power (a, b}
Matrix power mpower (&, b)
S Wector and matrix franspose transposela)
! Vector and mateix complex ctranspose{a)
COnjugale ranspose
+ Unary plus uplusia)

Unary minus
Colon

uminus (a)

colon{a,bhl orcolonia.b,c)

PROGRAMMING TOOLS: SCRIPTS AND FUNCTIONS a4

TABLE 3.3 Examples of MATLAR Specialized Matrix Operations

Name MATLAB Operator or Function
Matrix transpose Apostrophe (*) operator
[mversion irw function

Matrix determinant det function

Flip up and down £1ipud function

Flip left and right £1liplr function

Mairix rotation rab 30 function

Matrix reshape reshape [unclion

Sum of the diagonal elements Erace function

Since monochrome images are essentially 2D arrays, that is, matrices, all operands
in Tables 3.2 and 3.3 are applicable to images. However, the MATLAD Image Pro-
cessing Toolbox (IPT) also contains specialized versions of the main arithmetic oper-
ations involving images, whose main advantage is the support of integer data classes
(MATLAB math operators require inputs of class double). These functions are
listed in Table 3.4 and will be discussed in more detail in Chapter 6.

The relational operators available in MATLAB parallel the ones you would expect
in any programming language. They are listed in Table 3.5,

TABLE 3.4 Specialized Arithmetic Functions Supported by the IPT

Function Description

imadd Alids two images or adds & constant o an image

imsubtract Subiracts two images or sublracts & constant from an image

immultiply Multiplies two images (element-by-element) or multiplies a constant
times an image

imdivide Divides two images (clement-by-element) or divides an image by a
constant

imabsdiff Computes the absolute difference between two images

imcomplement Complements an image

imlincomb Computes a linear combination of two or more images

TABLE 35 Relational Operators

Operator Mame
< Less than
<= Less than or equal to
= Greater than
= Greater than of equal 1o

== Egual to
"= Mot equal to

42 MATLAR BASICS

TABLE 3.6 Logical Operators

Operator Name
& AND
| OR
— NOT

TABLE 3.7 Logical Functions

Function Description
HOr Performs the exclusive-or [(XOR) hetween two operands
all Feturns a 146 all the elements in a vector are nonzero or a [otherwise.
Operates columnwise on matrices
any Returns a 1 if any of the elements in a vector are nonzero or a 0 otherwise.

Operates columnwise on matrices

MATLAR includes a set of standard logical operators. They are listed in Table 3.6.
MATLAR also supports the logical functions listed in Table 3.7 and a vast number of
functions that return a logical 1 (true) or logical 0 (false) depending on whether the
value or condition in their arguments is true or false, forexample, izempry (a),
izseqgual (a,.b), isnumeric{a), and many others (refer to the MATLAB online
documentation).

3.3.3 Important Variables and Constants

MATLAB has a number of built-in variables and constants, some of which are listed
in Tahle 3.8.

3.3.4 Number Representation

MATLAB can represent numbers in conventional decimal notation (with optional
decimal point and leading plus or minus sign) as well as in scientific notation (using
the letter = to specify a power-of-10 exponent). Complex numbers are represented
using either 1 or § as a suffix for the imaginary part.

TABLE 3.8 Selected Buili-In Variables and Constants

MName Value Returned

ans Most recent answer

aps Floating-point relative accuracy

i {or J) Imaginary unit (+/'—1)

NaM {or nan) Mot-a-number (e.g., the result of 0/0)

Inf Infinity (e.g.. the result of a division by 0]

GRAPHICS AND VISUALIZATION 43

All numbers are stored inlc&rnal]gf using the IEEE floating-point standard, resulting
in a range of approximately 10~ 308_1+30%

3.3.5 Flow Control

The MATLAD programming language supports the usual flow control statements
found in most other contemporary high-level programming languages: i £ (with op-
tional el=e and elseif) and switch decision statements, for and while loops
and the associated statements (break and continue), and the trv. . .catch
block for error handling. Reler to the online documentation for specific syntax
details.

3.3.6 Code Optimization

As a result of the matrix-oriented nature of MATLAB, the MATLAB programming
language 1s a vectorized language, which means that it can perform many opera-
tions on numbers grouped as vectors or matrices without explicit loop statements,
Vectorized code is more compact, more efficient, and parallelizable.” In addition to
using vectorized loops, MATLAB programmers are encouraged to employ other op-
timization tricks, such as preallocating the memory used by arrays. These ideas—and
their impact on the execution speed of MATLAB code—are discussed in Tutorial 3.3
(page 53).

3.3.7 Input and Output

Basic input and output functionality can be achieved with functions input (to request
user input and read data from the keyboard) and disp {to display a text or array on
the screen). MATLAB also contains many support functions to read lrom and write
to files.

3.4 GRAPHICS AND VISUALIZATION

MATLAB has a rich set of primitives for plotting 210 and 3D graphics. Tutorial
9.1 [page 188) will explore some of the 2D plotting capabilities in connection with
the plotting of image histograms and transformation functions, whereas Tutorials in
Chapter 11 will show examples of 31} plots in connection with the design of image
processing filters in the frequency domain,

MATLAB also includes a number of built-in functions to display (and inspect the
contents of) images, some of which will be extensively used throughout the book {and
discussed in more detail in Tutorial 4.2 on page 74).

*Getting used 1o writing code in a vectorized way—as opposed to the equivalent nested for loops in a
comwventional programming language—is not a trivial process and it may take time to master it

44 MATLAR BASICS
3.5 TUTORIAL 3.1: MATLAB—A GUIDED TOUR

Goal

The goal of this tutorial is to give a brief overview of the MATLAB environment.

Objectives
* Become familiar with the working environment in MATLAB,
* Learn how o use the working direciory and set paths.
= Become familiar with the MATLAB help system,

* Explore functions that reveal system information and other useful built-in func-
tions.

Procedure

The environment in MATLADB has a simple layout, consisting of several key areas
(Figure 3.1).% A description of each is given here:

* A This pane consists of two tabbed areas: one that displays all files in your
current working directory, and another that displays vour workspace. The
workspace lists all the variables you are currently using,

= B: This pane shows your fifstory of commands,

* (C: This is where you can modify your current working directory. To change the
current directory, you can either type it directly in the text box or click on the
button to select the directory. You can also change the working directory using
the path command. See help documents for more information,

* [); This is the command window. Here you control MATLAB by typing in
commands,

Inorder for you to use files such as M-files and images, MATLAB must know where
these files are located. There are two ways this can be done: by setting the current
directory to a specific location, or by adding the location to a list of set paths known
to MATLARB. The currant direcrary should be used for temporary locations or when
you need to access a directory only once. This directory is reset every time MATLAB
is restarted. To change the current directory, see description C above. Setting a path
is a permanent way of telling MATLAB where files are located—the location will
remain in the settings when MATLAB is closed. The following steps will illustrate
how to set a path in MATLARB:

1. From the File menu, select Set Path...

i The exact way your MATLABR windma will look may differ from Figure 3.1, depending on the operating
system, MATLAT version, and which windows and working arcas have been selectod—uonder the Dveskrop
menu—ie be displayed.

TUTORIAL 3.1: MATLAE—A GUIDED TOUR 45

c
AH
D@ ‘w8 - BY Y C “Om

fp R

I‘L B }”1 TH OO Al snieet BALMAL 0 0e %% s fews vl by wmas,

-l

D

FIGURE 3.1 MATLAB environment,

The paths are presented in the list box in decreasing precedence order.

2. If the directory you wish to add has subfolders within it, then use the Add with
Subfolders... button. If your directory only contains files, you can use the Add
Folder... button. To change the precedence of your directory, use the Move
buttons.

3. Save your changes and close the Set Path window.

The help system in MATLAB is very useful. It provides information about func-
tions, such as syntax, descriptions, required and optional input parameters, and output
parameters. It also includes a number of demos. The following steps will show you
how to access help documents and navigate the help window.

4. To access the help system, type doc in the command window, Open the help
system now.

The left pane of the help window displays a tree of help information. The right
pane will show the help document that you choose. If you know exactly what function
you need help for, you can use the doc, helpwin, or help commands to directly
access the help information.

5. In the command window in MATLAB, execute the following commands to
view the help document for the function computer.

46 MATLAR BASICS

help computer
helpwin computer
doc computer

Question T What is the difference between the commands help, helpwin, and
doc?

There are several commands that can be used to gain information about the system,
Explore them in this step.

fi. Execute the following commands, one at a time, to see their function,

realmin
realmas
bitmax
computer
ver
version
hostid
license

Question 2 What is the difference between ver and wversion?

7. For some MATLAB humeor, repeatedly type the command why.

3.6 TUTORIAL 3.2: MATLABE DATA STRUCTURES

Goal

The poal of this tutorial is to learn how to create, initialize, and access some of the
maost useful data structures available in MATLAB.

Objectives
* Learn how to use MATLAB for basic calculations involving variables, arrays,
matrices, and vectors.
+ Explore multidimensional and cell arrays.
= Review matrix operations.
* Learn how to use MATLAB structures.
* Explore useful functions that can be used with MATLAB data structures,

Procedure

l. Execute the following lines of code one at a time in the Command Window ta
see how MATLAB can be used as a calculator.

TUTORIAL 3.2: MATLAR DATA STRUCTURES 47

2+ 3
2*3 +

4%5 + 6%7;

Question T What is the variable ans used for?
Question 2 What is the purpose of using a semicolon {;) at the end of a statement”
2. Perform calculations using variables.

fruit_per_box = 20; num_of_boxes = 5;
total_num_cof_fruit = fruit_per_box * num_of_boxes

Question 3 Experiment with creating your own variables, Are variables case sen-
sitive?

Question 4 ‘What is the value/purpose of these variables: pi, epz, inf, 17 [s it
possible to overwrite any of these variables? If so, how can it be undone?

3. Execute the commands whe and whos, one at a time, to see their function and
the difference hetween them.

There are several commands that will keep the MATLAB environment clean.
Use them whenever you feel your command window or workspace is cluttered with

statermnents and variables.

4. Clear a variable in the workspace. Afler execution, note how the variable dis-
appears [rom the workspace.

clear fruit_per_box

5. Clear the command window and all variables with the following lines of code
(one at a time to see their effects individually],

cle
clear all

. Create a 3 x 3 matrix by executing the following line of code.

A= 12 3;456;7 B 9]

Question 5 What is the use of the semicolon in this statement?

48 MATLAR BASICS

The Colon Operator

7. A very useful operator in MATLAR is the colon (:). It can be used to create a
vector of numbers,

8. A third parameter determines how to count between the starting and ending
numbers. It is specified between the start and end values,

1145
1=1:1
12:9
=2

L = B

Question & Write a statement that will generate a vector of values ranging from 0
to m in increments of /4,

4. The colon operator can also be used to return an entire row or column of a

matrix.
A= [12 3;45 &6;7 8 3]
Al:,1)
ABil,:)

Question 7 Write a line of code that would generate the same 3 3 matrix as in the
variable 2 above, but using the colon operator to generate the sequence of numbers
in each row inslead of explicitly writing them.

10. The colon aperator can be replaced with the function colon, which performs
the same operation,

colon(l, b}

As seen in the steps above, creating a vector of evenly spaced numbers is easily
done with the colon (:) operator when we know where the vector starts, ends, and
how large the space in between each value is. In certain cases, we may wish to create
a vector of numbers that range between two numbers, but we only know the quantity
of values needed {for example, create a vector that consists of 4 values between /4
and 7) . To do this, we use the 1 inspace function.

11. Execute this command to see how the function 1inspace operates.

linspace(pi/4,pi, 4)

TUTORIAL 3.2: MATLAR DATA STRUCTURES 49
12. Compare the result from the previous step with these values.

pi/jd
pi/2
Ivpi 4
pi

Special Built-In Matrices

MATLAB has several buili-in functions that will generate frequently used matrices
automatically.

13. Execute the following lines of code one at a time.

zeros (3,4}
onesii,d)
onesii, 4y * 10
randi{i, 4}
randnild,d)

Question 8 What is the difference between the functions rand (M,) and
randn (M, N} 7?

Matrix Concatenation

Concatenation of matrices is done with brackets ([1) or using the cat function. Take,
for example, the statement

A=[12 3;456;7 B8 9]

The brackets are combining three rows, Instead of explicitly defining each row all
at once, they can be defined individually as vectors and then combined into a matrix
using brackets,

14. Combine the three individual vectors inlo a 3 = 3 matrix.

[1 2 3]; ¥Y=[458)]; 2=[7889)];
[X;¥:E]
cati(l,X,¥,E)

X
A
E

Similarly, the brackets can be used to delete a row of a matrix.

15. Delete the last row (row 3) of the matrix . Note how the colon operator is used
to specily the entire row,

&0 MATLAR BASICS

A vector with A elements is an array with one row and A columns. An element of
a vector can be accessed easily by addressing the number of the element, as in X (5],
which would access the fifth element of vector 2. An element of a two-dimensional
miatrix is accessed by first specifying the row, then the column, asin¥ (2, 5}, which
would return the element at row 2, column 5. Matrices of dimensions higher than 2
can be accessed in a similar fashion. [t is relevant to note that arrays in MATLADB are
I-based—the first element of an array is assigned or accessed using 1, as opposed to
0. which is the standard in many programming languages.

16. Use the ones and rand [unctions to create multidimensional arrays.

A cnes(4,3,2);
B rand(5,2,3);
size(A)
s1z=(B)
disp (&)
dizsp(B)

Question 9 What does the =ize function do?

Question 10 ‘What does the dizp function do?

Operations Involving Matrices

Performing arithmetic operations on matrices can be achieved with the operators
+ = * /. The default for the multiply (*) and divide (/) operators is matrix multi-
plication and matrix division. To perform arithmetic operations on individual elements
of a marrix, precede the operator with a dot ().

17. Perform matrix multiplication on two matrices,

¥=1[12-2; 0-3 4; 7 3 0]
¥ = [10-1; 23 -5; 1 3 5]
X%y

18. Perform element-hy-element multiplication.
o v

189. Perform another matrix multiplication on two matrices.

¥ o= eye(d,d)
¥ = randid, 2}
O
¥ o* X

TUTORIAL 3.2: MATLAR DATA STRUCTURES 51
Question 11 Why did the last operation fail?

20. Use the diag and trace functions to perform operations on the diagonal of
a malrix.

¥ o= rana(3,3)*4
Y_diag = diagl(¥)
¥_trace = trace(Y)

Question 12 What does the diag function do?
Question 13 What does the trace function do?

Question 14 Write an alternative statement that would produce the same resulis
as the trace function.

21. Calculate the transpose of a matrix.

22. Calculate the inverse of a matrix and show that ¥¥~! = ¥71¥ = [, where [is
the identity matrix.

¥_inw = inwvi(Y¥)
¥ o Y _inw
Y_inw * ¥

23. Calculate the determinant of a matrix,

¥_det = det(¥)

Cell Array

As demonstrated earlier, a matrix is the fundamental data type in MATLAB. It re-
sembles the classical definition of an array as a homogeneous data structure, that
is, one in which all its components are of the same type. Celf arrays, on the other
hand, are another type of array where each cell can be any data type allowed by
MATLAB. Each cell is independent of another and, therefore, can contain any data
type that MATLAB supports. When using cell arrays, one must be careful when ac-
cessing or assigning a value to a cell; instead ol parentheses, curly braces ({ }) must be
used,

24. Execute the following lines of code one at a time to see how cell arrays are
handled in MATLAB.

52 MATLAR BASICS

{1} = [1 2 3;4 5 &;7 8 9]; %Cell 1 is a matrix
{2} = 2+34; $Cell 2 is complex
{3} = 'String’; %Cell 2 is a string
{4} = 1:2:5; $Cell 4 1s a vector
X

celldisp (X}

X1}

®{11

Question 15 What does the cel1di sp function do?
Question 16 What does the percent (%) character do?

Question 17 What is the difference between the last two lines in the code above
(¥(1) as opposed to ¥ {1})?

There is another way to assign values to a cell array that is syntactically different,
but yields the same results, Note in the next step how the cell index is enclosed within
normal parentheses (()}, but the data that will be saved to the cell is encapsulated by
curly braces ({}).

23. Execute this line to see another way of assigning cell array values.

X(1) = {[1 2 3;4 5 &;7 8 9]};

26, The next few lines of code will demonstrate proper and improper ways of cell
array assignment when dealing with strings.

Xi3) = 'This produces an error’
X(3) = {*This iz okay'}

X{3} = ‘This is ckay too’
Structures

Structures are yet another way of storing data in MATLAB. The syntax for structures
is sirnilar to that of other programming languages. We use the dot (.) operator to reffer
to different fields in a structure. Structures with identical layout (number of fields,
their names, size, and meaning) can be combined in an array (ol structures).

27. Create an array of two structures that represents two images and thelir sizes,
my_images(l) . imagename = "Image 1°;

my_images (1) .widkth = 25&;
my_images(1l) . haight = 256&;

TUTORIAL 3.3: PROGRAMMING IN MATLAB 53

my_images (2) .imagename = 'Image 2';
my_images (2) .width = 128;
my_images (2) .height = 128;

28. View details about the structure and display the contents of a field.

my_images (1)
my_images (2) .imagename

29. Display information about the structure.

num_of_images = prod(size{my_images))
fieldnames (my_images)

class (my_images)

igstruct (my_images)

isstruct (num_of_images)

Question 18 What does the £fieldnames function do?

Question 19 What does it mean when the result from the function isstruct is
1?7 What does it mean when it is (7

Question 20 Use the help system to determine what function can be used to delete
a field from a structure.

3.7 TUTORIAL 3.3: PROGRAMMING IN MATLAB

Goal

The goal of this tutorial is to explore programming concepts using scripts and
functions.

Objectives
¢ Learn how to write and execute scripts.
» Explore the MATLAB Editor.
« Explore functions and how to write them.
* Learn the basics of loop vectorization.

54 MATLAB BASICS

What You Will Need

e script3_3_1.m
* script3_3_2.m
e raise_to_power.m

Procedure

Although the command window is simple and convenient to use, it does not provide
a way of saving or editing your code. The commands stored in the Command History
window can, however, be easily made into a script file. A script is a text file with the
extension .m and is used to store MATLAB code. Scripts can be created and modified
using the built-in editor.

1. To start a new script, navigate to File > New > M-File.

The MATLAB Editor may open in a separate window or it may be docked within
the MATLAB environment, depending on how your environment was previously set

up.

2. Open the file named script3_3_1 .m. If the M-file is located in the current
directory, you may also open it from the Current Directory listing by double-
clicking the file name.

M-files are syntax color coded to aid in reading them. As you may have no-
ticed, comments can be added to any script using two methods: percent (%) signs, or
wrapping the comments with % { and %}. The second method is used for the header
information in the script.

Question 1 Based on the script in file seript3_3_1.m, what is the difference
between using a percent (%) sign and using % (and %} 7

'TTo execute one or several lines of code in a script, highlight the code and press
F9.

3. Highlight all the code in script3_3_1.mand press F9 to execute the script.

The Cell Mode

A new editing mode (available in MATLAB 7.0 and above) called cell mode al-
lows you to make minor adjustments to variables, and re-execute a block of code
easily.

Shortcut keys may vary for different versions of MATLAR for different operating systems. The shortcat
keys listed in this book work for the PC version of MATLADL.

TUTORIAL 3.3: PROGRAMMING IM MATLAR 55

4. Openfile script3_3_2.m

4. Enable cell mode by navigating to Cell = Enable Cell Mode in the MATLAB
environment.

With cell mode activated, you will note that the comments that are preceded with
two percent signs (% %) are slightly bolder than the other comments. This corresponds
toa block tide. To create a cell block, all you need to do is give it a block title. Cell
blocks allow you to modify and execute one block of code at a time. More than one
cell block can exist in a single script.

6. Execute all the code in the script.

This script is an example of stretching the histogram of a monochrome image to
the full dynamic range of allowed values, achieved by the imadjust function. This
Function also allows us o make gamma adjustments o the image. Al this time, the
concepis of histogram stretching and gamma correction are not important; they will
be discussed in detail in Chapter 10. Instead, let us focus on how cell mode may be
useful to us later on, By making small changes to the value of gamma, we can see the
effects of gamma on the adjusted image. Cell mode makes this task easy.

7. Locate the line of code where the variable gamma is assigned a value of 1,
Highlight anfy the value 1.

When cell mode is active, a new menu har appears in the Editor. Among the icons,
there are two text boxes that allow us to make adjusiments to the value we just selected
in the code. The first text box allows us to subtract and add, and the other allows us
to divide and multiply the value we highlighted in the code.

8. In the add/subtract text box, type a value of 0.1 and press the plus {+) sign to
the right.

Question 2 What happened to the value of the variable gamma in the code?

Question 3 Inaddition to the modification of code, what else happened when the
plus button was pressed? What happens when il is pressed again?

Question 4 Oither than the ones described in this tutorial, what features are avail-
able when cell mode is active?

Functions

Functions are also .m files that contain MATLAB code, but with the added ability of
being able to be called from another script or function as well as receiving parameters,
Openthe raise to_power function to see how the file is constructed.

56 MATLAR BASICS

9. Open raise_to_power.m in the Editor.

The M-file of a function contains all necessary information 1o call the function,
execule il, and display its help documentation. The first line in the file defines the
function with its input and output parameters, In the case of the raise_to_power
function, it takes two parameters and returns one, Any comments immediately after
the function definition are considered help documentation,

10. Ensure that the raise_to_power . m file is located in a directory that is part
of either a set path or the current directory,

11. View the help information for the function by typing the following statement
into the command window:

help raise_to_power

Question 5§ Compare the help documentation with the comments in the M-file.
How does MATLAB determine which comments are to be displayed for help and
which are just comments in the function code?

Because we are using MATLAB for image manipulation, it is important to en-
sure that we are taking advantage of CPU and memory-efficient coding practices—
particularly loop vectarizaiion. Take, for example, the following block of pseudocode
that could easily be implemented in any programming language. NB: Depending on
your computer's specd, you may want to change the value of MAX_CNT in the code
snippets below,

MAX_CNT = 10000
for i = 1 to MAX_CNT

&

de x(1) = 1 2

Here, we are populating an array in which each element is the index of that element
squared. The following MATLAE code implements the pseudocode above using
typical programming techniques. In these examples, the tic and toc commands are
used to calculate the execution time.

12, Implement the pseudocode above with the following statements,

tic

MAX_CMT = 10000

for 1 = 1:MAX_CHNT
®x(i) =1 7 2;

end

Lo

We could greatly influence the speed of this loop by simply preallocating the
memory used by the array. This is effective because every time we add data to the

TUTORIAL 3.3: PROGRAMMING IM MATLAR 57

matrix, new memory must be allocated to hold the larger variable if there is no room
forit. If the correct amount of memaory is already allocated, then MATLAB only needs
to alter the data in each cell.

13. Implement the previous loop, but with preallacation.

tic

MAX_CNT = 10000

*x = zercos(l,MAN_CHT):

for 1 = 1:MR¥_CHNT
x{i) = 1 7 2Z;

end

toc

Question 6 By what factor did preallocating the array x increase performance?
In MATLAB., this is still considered poor programming technique. MATLAB acts
as an interpreter between the code yvou write and the hardware of your computer. This
means that each tme a statement is encountered, it is interpreted 1o a lower level
language that is understood by the hardware. Because of this, loops. such as the one
above, cause MATLAB to interpret the statement in the loop, however, many times
the loop executes—in the case above, 10,000 times. Interpretation is slow compared
to the speed of computer hardware. Since MATLAB operates on matrices natively, we
can perform the same operation using Joop veciarization, thus getting rid of the loop.

14. Implement a more efficient version of the loop,

tic
MAX_CNT = 10000

i = 1:MAX CHNT;
= =1 .7 2
too

Question 7 In the code above, why do we use .~ instead of just =7

Question 8 How much faster is loop vectorization than our previous two imple-
mentations?

Here we do not need to explicitly tell MATLAB 1o perform the operation on each
element because that is the nature of the MATLAB environment. Loop vectorization
also takes care of the preallocation prablem we saw in the first implementation.

Question 9 Consider the following pseudocode. Write a vectorized equivalent.

i=0
for £t = 0 bte 2*pi in steps of pi/4d
do 1 =1 + 1
#®(i) = =minit)

58 MATLAR BASICS

Earlier it was mentioned that a script can be made from the Command Hisiory
window, MNow that we have entered some commands, we can see how this can be
done.

15. To create a script from the Command History window, locate the last four
statements entered. To select all the four statements, hold down the ctrl key
and select each statement, and then right-click the highlighted statements, and
select Create M-File.

WHAT HAVE WE LEARNED?

« MATLAB (MATrix LABoratory) is a data analysis, prototyping, and visual-
ization tool with built-in support for matrices and malrix operations, excellent
graphics capabilities, and a high-level programming language and development
environment. It has been selected as the tool of cheice for this book because of
its ease of use and extensive bullt-In support for image processing operations,
encapsulated in the Image Processing Toolbox,

* The MATLAB working environment consists of the MAILAE Desktop, the
MATLAR Editor, and the Help System.

* M-files in MATLAB can be scripts that simply execute a series of MAT-
LAB commands (or stafements) or can be functions that can accept argurments
[parameters) and produce one or more ouiput valwes, User-created functions
extend the capabilities of MATLAB and its toolboxes to address specific needs
or applications,

* An M-file containing a script consists of a sequence of commands to be inter-
preted and executed much like a batch file. An M-file containing a function,
on the other hand, contains a piece of code that performs a specific task, has a
meaningful name (by which other functions will call it), and (optionally) receives
parameters and returns results.

* The best ways to get started with MATLAB are to explore its excellent built-in
product documentation and the online resources at MathWorks web site.

LEARN MORE ABOUTIT
There are numerous books on MATLAB, such as the following:

« Hanselman, D. and Littlefield, B.. Mastering MATLAE 7, Upper Saddle River,
NJ: Prentice Hall, 2005. Excellent reference book.

= Pratap, R., Getting Started with MATLAE, New York, NY: Oxford University
Press, 2002, Great book for beginners.

PROBLEMS 59
ON THE WEB

There are many {ree MATLAB tutorials available online. The book’s companion web
site (http: Mfwww.opemarques.com/) contains links to several of them.

3.8 PROBLEMS

3.1 Using MATLAB as a calculator, perform the following calculations:
{a) 24.4 x 365
(b) cos(m/4)
(¢) 45
(d) g6
(e) 4.6°
M y=3L 6" -3
32 Usethe format function to answer the following questions:
(a) What is the precision used by MATLAB for floating-point calculations?
(b} What is the default number of decimal places used to display the result of
a floating-point calculation in the command window?
(¢} How can vou change it to a different number of decimal places?
3.3 [Initialize the following variables: x = 345.88; v = log,p(45.8); and z =
sin(37/4). Note that the MATLAB function log calculates the natural logarithm;

vou need to use Logl0 to calculate the common (base-10) logarithm of a number.
Use them to calculate the following:

{-a} Hl::l—_'.l'"z:l
(b) »* — Uy +3)
() —;

3.4 Initialize the following matrices:

4 5 1
x=|0 2 4
i 41
-7 6 =1
y=|43 =2 10
13 —4

60 MATLAB BASICS

Use them to calculate the following:

{a) 3X +2Y -2
b) x*—y?
(e xTy"
(d) xv-!

3.5 What is the difference between the following MATLAB functions:
(a) Logand loglo
(b) rand and randn
(¢} power and mpower
(d) uminus and minus

3.6 What is the purpose of function lookfor? Provide an example in which it
can be useful.

3.7 What is the purpose of function which? Provide an example in which il can
be useful.

