

Computer Security

CS433

Chapter 2:

Authentication, Access Control,

and Cryptography

$\widehat{}$	Survey authentication mechanisms
\checkmark	List available access control implementation options
C	Explain the problems encryption is
•	designed to solve
i de la companya de l	Understand the various categories of encryption tools as well as the strengths, weaknesses, and applications of each
	Learn about certificates and certificate
	authorities

Authentication

The act of proving that a user is who she says she is

Methods:

- ✓ Something the user *knows*
- ✓ Something the user *is*
- ✓ Something user *has*

Identification is asserting who a person is.

<u>Authentication</u> is proving that asserted identity.

Something You Know

Can be:

- Passwords
- Security questions

Attacks on "something you know":

- Dictionary attacks
- Inferring likely passwords/answers
- Guessing
- Defeating concealment
- Exhaustive or brute-force attack
- Rainbow tables

Every password can be guessed; password strength is determined by how many guesses are required.

Password Storage

Plaintext

Concealed

Identity	Password
Jane	qwerty
Pat	aaaaaa
Phillip	oct31witch
Roz	aaaaaa
Herman	guessme
Claire	aq3wm\$oto!4

Identity	Password
Jane	0x471aa2d2
Pat	0x13b9c32f
Phillip	0x01c142be
Roz	0x13b9c32f
Herman	0x5202aae2
Claire	0x488b8c27

Passwords should never be stored in plaintext but rather should always be concealed

Distribution of Password Types

Good Password

- \checkmark Use characters other than just a–z
- ✓ Choose long passwords.
- ✓ Avoid actual names or words.
- ✓ Use a string you can remember.
- ✓ Use variants for multiple passwords
- ✓ Change the password regularly.
- ✓ Don't write it down.
- ✓ Don't tell anyone else. The easiest attack is social engineering

Biological properties, based on some physical characteristic SCANNING 28%

Something You Are

Biometrics

Can be:

fingerprint

of the human body.

- hand geometry (shape and size)
- retina and iris (parts of the eye)
- voice
- handwriting, signature, hand motion
- typing characteristics
- blood vessels in the finger or hand
- face
- facial features, such as nose shape or eye spacing

Biometrics

Something You have

Something you have can be:

- Passive or active
- Static or dynamic

Federated Identity Management

- ✓ FIM : is a union of separate identification and authentication systems.
- ✓ Instead of maintaining separate user profiles, a federated scheme maintains one profile with one authentication method.
- Separate systems share access to the authenticated identity database.
- ✓ Authentication is performed in one place, and separate processes and systems determine that an already authenticated user is to be activated.

Federated Identity Management

Single sign-on

- Single sign-on lets a user log on once per session but access many different applications/systems.
- ✓ It often works in conjunction with federated identity management, with the federated identity provider acting as the source of authentication for all the applications.

Single sign-on

FID <u>VS</u> SSO

Federated identity management

- Involves a single identity management module that replaces identification and authentication in all other systems.
- \checkmark All these systems invoke the identity management module.

Single sign-on,

- \checkmark An umbrella procedure to which you log in once per session
- The umbrella procedure maintains your identities and authentication codes for all the different processes
- You access systems still call for individual identification and authentication, but the umbrella task performs those interactions on behalf of the user.

Access Control

Access control: limiting who can access what in what ways

Access Policies

Protecting objects involves several complementary goals:

\checkmark Check every access

- If we have previously authorized the user to access the object, we do not necessarily intend that the user should retain indefinite access to the object.
- ✓ Enforce least privilege
 - A subject should have access to the smallest number of objects necessary to perform some task.

✓ Verify acceptable usage

- Ability to access is a yes-or-no decision
- Track users' access
- Enforce at appropriate granularity
- Use audit logging to track accesses

Implementing Access Control

Reference monitor

- To have an effective reference monitor, we need to consider effective and efficient means to translate policies.
- It could be embedded in an application, part of the operating system, or part of an appliance.
- Access rights models implemented by the reference monitor:
 - Access control directory
 - Access control matrix
 - Access control list
 - Privilege list
 - Capability
 - Procedure-oriented access control
 - Role-based access control

Reference Monitor

- Access control that is always invoked, tamperproof, and verifiable
- A reference monitor is the primary access control enforcement mechanism of the operating system

Access Control Directory

• We can think of the directory as a listing of objects accessible by a single subject, and the access list as a table identifying subjects that can access a single object.

Access Control Matrix

Access Control Matrix is a table in which:

- Row represents a subject
- Column represents an object
- Entry is the set of access rights for that subject to that object.
- Can be represented as a list of triples: <subject, object, rights >

	BIBLIOG	TEMP	F	HELP.TXT	C_COMP	LINKER	SYS_CLOCK	PRINTER
USER A	ORW	ORW	ORW	R	X	x	R	w
USER B	R	-	-	R	X	x	R	w
USER S	RW	-	R	R	X	x	R	w
USER T	-	-	-	R	X	x	R	w
SYS_MGR	-	-	-	RW	OX	OX	ORW	0
USER_SVCS	-	-	-	0	X	x	R	w

Subject	Object	Right
USER A	Bibliog	ORW
USER B	Bibliog	R
USER S	Bibliog	RW
USER A	Temp	ORW
USER A	F	ORW
USER S	F	R
etc.		

Access Control List

- There is one such list for each object, and the list shows all subjects who should have access to the object and what their access is.
- The access control list allows default rights

Privilege Control List

Privilege List: is a row of the access matrix, showing all those privileges or access rights for a given subject

• One advantage of a privilege list is ease of revocation

	File A	Printer	System Clock
User W	Read Write Own	Write	Read
Admin		Write Control	Control

Capability

• Capability is an unforgeable token that gives the possessor certain rights to an object

	File A	Printer	System Clock
User W	Read Write Own	Write	Read
Admin		Write Control	Control

Capability: Single- or multi-use ticket to access an object or service

Implementing Access Control

• Reference monitor

- To have an effective reference monitor, we need to consider effective and efficient means to translate policies.
- Access rights models implemented by the reference monitor:
 - Access control directory
 - Access control matrix
 - Access control list
 - Privilege list
 - Capability
 - Procedure-oriented access control
 - Role-based access control

Cryptography

- Encryption or cryptography means secret writing
- Cryptography conceals data against unauthorized access
- \checkmark A transformation makes data difficult for an outsider to interpret
 - The purpose is to make data unreadable (meaningless).
- ✓ Probably the strongest defence in computer security
- ✓ Encryption is like a machine
 - You insert a plaintext and the output is an encrypted text.
- Old encryption devices uses rotor machines. Now they are substituted by computer algorithms.

Problems Addressed by Encryption

Suppose a sender S wants to send a message M to a recipient R.

An attacker may attempt to:

<i>block</i> it	preventing M from reaching R \rightarrow availability	
<i>intercept</i> it -	reading or listening to M → confidentiality	
<i>modify</i> it -	intercepting and changing M → integrity	
<i>fabricate</i> an authentic- looking M`	integrity, availability	

Encryption Terminology

- ✓ Sender
- ✓ Recipient
- ✓ Transmission medium
- ✓ Interceptor/intruder
- ✓ Encrypt, encode, or encipher
- ✓ Decrypt, decode, or decipher
- ✓ Cryptosystem
- ✓ Plaintext
- ✓ Ciphertext

Encryption/Decryption Process

Cryptographic Systems

Cryptographic systems can be characterized by:

Symmetric vs. Asymmetric

Stream Ciphers

Block Ciphers

Stream vs. Block

	Stream	Block
Advantages	 Speed of transformation Low error propagation 	High diffusionImmunity to insertion of symbol
Disadvantages	 Low diffusion Susceptibility to malicious insertions and modifications 	 Slowness of encryption Padding Error propagation

DESThe Data Encryption Standard

Symmetric block	Form	Operation	Properties	Strength
cipher	DES	Encrypt with one key	56-bit key	Inadequate for high- security applications by today's computing capabilities
	Double DES	Encrypt with first key; then encrypt result with second key	Two 56-bit keys	Only doubles strength of 56-bit key version
Developed in 1976 by IBM for the US National Institute of Standards and Technology (NIST)	Two-key triple DES	Encrypt with first key, then encrypt (or decrypt) result with second key, then encrypt result with first key (E-D-E)	Two 56-bit keys	Gives strength equivalent to about 80-bit key (about 16 million times as strong as 56-bit version)
	Three-key triple DES	Encrypt with first key, then encrypt or decrypt result with second key, then encrypt result with third key (E-E-E)	Three 56-bit keys	Gives strength equivalent to about 112-bit key about 72 quintillion (72*10 ¹⁵) times as strong as 56-bit version

AES Advanced Encryption System

- ✓ Symmetric block cipher
- Developed in 1999 by independent Dutch cryptographers
- ✓ Still in common use

DES vs. AES

	DES	AES
Date designed	1976	1999
Block size	64 bits	128 bits
Key length	56 bits (effective length); up to 112 bits with multiple keys	128, 192, 256 (and possibly more) bits
Operations	16 rounds	10, 12, 14 (depending on key length); can be increased
Encryption primitives	Substitution, permutation	Substitution, shift, bit mixing
Cryptographic primitives	Confusion, diffusion	Confusion, diffusion
Design	Open	Open
Design rationale	Closed	Open
Selection process	Secret	Secret, but open public comments and criticisms invited
Source	IBM, enhanced by NSA	Independent Dutch cryptographers

Public Key (Asymmetric) Cryptography

Instead of two users sharing one secret key, each user has two keys: one public and one private Messages encrypted using the user's public key can only be decrypted using the user's private key, and vice versa

Secret Key vs. Public Key Encryption

	Secret Key (Symmetric)	Public Key (Asymmetric)
Number of keys	1	2
Key size (bits)	56-112 (DES), 128-256 (AES)	Unlimited; typically no less than 256; 1000 to 2000 currently considered desirable for most uses
Protection of key	Must be kept secret	One key must be kept secret; the other can be freely exposed
Best uses	Cryptographic workhorse. Secrecy and integrity of data, from single characters to blocks of data, messages and files	Key exchange, authentication, signing
Key distribution	Must be out-of-band	Public key can be used to distribute other keys
Speed	Fast	Slow, typically by a factor of up to 10,000 times slower than symmetric algorithms

Public Key to Exchange Secret Keys

Key Exchange Man in the Middle

Error Detecting Codes

Demonstrates that a block of data has been modified

- **Simple error detecting codes:**
 - ✓ Parity checks
 - Odd vs Even
 - ✓ Cyclic redundancy checks
 - A short check value attached to the message, based on the remainder of a polynomial division of message

* Cryptographic error detecting codes:

- ✓ One-way hash functions- invers is hard(infeasible) to compute
- Cryptographic checksums- prevents attackers from modifying:
 - the error detection mechanism
 - the data bits
- Digital signatures- a protocol produces the same effect as a real signature

Parity Check

Original Data	Parity Bit	Modified Data	Modification Detected?
0 0 0 0 0 0 0 0	1	0 0 0 0 0 0 0 <u>1</u>	Yes
0 0 0 0 0 0 0 0	1	<u>1</u> 0000000	Yes
0 0 0 0 0 0 0 0	1	<u>1</u> 000000 <u>1</u>	No
000000000	1	0 0 0 0 0 0 <u>1</u> <u>1</u>	No
0 0 0 0 0 0 0 0	1	$0 \ 0 \ 0 \ 0 \ 0 \ \underline{1} \ \underline{1} \ \underline{1}$	Yes
0 0 0 0 0 0 0 0	1	$0 \ 0 \ 0 \ 0 \ \underline{1} \ \underline{1} \ \underline{1} \ \underline{1} \ \underline{1}$	No
0 0 0 0 0 0 0 0	1	$0 \underline{1} 0 \underline{1} 0 \underline{1} 0 \underline{1} 0 \underline{1}$	No
0 0 0 0 0 0 0 0	1	1 1 1 1 1 1 1 1 1	No

One-Way Hash Function

Digital Signature

A digital signature must meet two primary conditions:

- It must be unforgeable.
 - If person S signs message M with signature Sig(S,M), no one else can produce the pair [M,Sig(S,M)].
- It must be authentic.
 - If a person R receives the pair [M, Sig(S,M)], R can check that the signature is really from S. Only S could have created this signature, and the signature is firmly attached to M.

Example: Construct digital signature for a file

CertificatesTrustableIdentities and Public Keys

- A certificate is a public key and an identity bound together and signed by a certificate authority.
- A **certificate authority** is an authority that users trust to accurately verify identities before generating certificates that bind those identities to keys.

Certificate Signing and Hierarchy

To create Diana's certificate:

Diana creates and delivers to Edward:

Name: Diana Position: Division Manager Public key: 17EF83CA ...

Edward adds:

Name: Diana	hash value
Position: Division Manager	128C4
Public key: 17EF83CA	

Edward signs with his private key:

Name: Diana	hash value
Position: Division Manager	128C4
Public key: 17EF83CA	

Which is Diana's certificate.

To create Delwyn's certificate:

Delwyn creates and delivers to Diana:

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C

Diana adds:

Name: Delwyn	hash value
Position: Dept Manager	48CFA
Public key: 3AB3882C	

Diana signs with her private key:

Name: Delwyn Position:	hash value
Dept Manager Public	48CFA
key: 3AB3882C	

And appends her certificate:

Name: Delwyn Position: Dept Manager Public key: 3AB3882C	hash value 48CFA
Name: Diana Position: Division Manager Public key: 17EF83CA	hash value 128C4

Which is Delwyn's certificate.

- Diana's certificate is made using Edward's signature.
- Delwyn's certificate includes Diana's certificate so that it can effectively be tied back to Edward, creating a chain of trust.

Cryptographic Tool Summary

Tool	Uses
Secret key (symmetric) encryption	Protecting confidentiality and integrity of data at rest or in transit
Public key (asymmetric) encryption	Exchanging (symmetric) encryption keys Signing data to show authenticity and proof of origin
Error detection codes	Detect changes in data
Hash codes and functions (forms of error detection codes)	Detect changes in data
Cryptographic hash functions	Detect changes in data, using a function that only the data owner can compute (so an outsider cannot change both data and the hash code result to conceal the fact of the change)
Error correction codes	Detect and repair errors in data
Digital signatures	Attest to the authenticity of data
Digital certificates	Allow parties to exchange cryptographic keys with confidence of the identities of both parties

Summary

- Users can authenticate using something they know, something they are, or something they have
- Systems may use a variety of mechanisms to implement access control
- Encryption helps prevent attackers from revealing, modifying, or fabricating messages
- Symmetric and asymmetric encryption have complementary strengths and weaknesses
- Certificates bind identities to digital signatures

Zain and Noor use asymmetric cryptographic system, which of the following is NOT true?

A> Noor can decrypt any message that is encrypted using Zain's private kay	B> If Zain used her private key for encryption then Noor can use Zain's public key for decryption
C> If Zain used her public key to encrypt a	D> Noor cannot decrypt any message
message, then Noor can use her private	that is encrypted using Zain's public kay
key for decryption	E> Other:

One of the advantages of public key cryptography is that, if implemented properly, the algorithms generally run much faster than symmetric key cryptography algorithms.

A> true	B> false

Zain and Noor want to establish a secure communication channel between them. They do not care about the confidentiality of the messages being transmitted, but they do want to ensure the integrity and authenticity of the messages.

A> they cannot achieve that! Why?	B> they can achieve that! How?

Implementing a symmetric cryptographic system, How many key are required in each of the following cases?

A> 5 team members want to keep their discussions secret from other teams in the class B> 5 team members want to keep their discussions secret from each other

The number of keys required to establish pair-wise secure communications among a group of 30 people using symmetric-key cryptography is less than the number of keys required using asymmetric cryptography

A> true	B> false