
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 1

Chapter 30 Multithreading and
Parallel Programming

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 2

Objectives
! To get an overview of multithreading (§30.2).
! To develop task classes by implementing the Runnable interface (§30.3).
! To create threads to run tasks using the Thread class (§30.3).
! To control threads using the methods in the Thread class (§30.4).
! To control animations using threads and use Platform.runLater to run the code in

application thread (§30.5).
! To execute tasks in a thread pool (§30.6).
! To use synchronized methods or blocks to synchronize threads to avoid race conditions

(§30.7).
! To synchronize threads using locks (§30.8).
! To facilitate thread communications using conditions on locks (§§30.9–30.10).
! To restrict the number of accesses to a shared resource using semaphores (§30.12).
! To use the resource-ordering technique to avoid deadlocks (§30.13).
! To describe the life cycle of a thread (§30.14).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Thread Concepts
! A program may consist of many tasks that

can run concurrently.
! A thread is the flow of execution, from

beginning to end, of a task
! A thread provides the mechanism for

running a task. With Java, you can launch multiple
threads from a program concurrently.

! These threads can be executed
simultaneously in multiprocessor systems

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 4

Threads Concept (continue)
Multiple threads on

multiple CPUs

Multiple threads
sharing a single CPU

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Threads Concept (continue)
! In single-processor systems, the multiple threads share

CPU time, known as time sharing, and the operating
system is responsible for scheduling and allocating
resources to them

! Multithreading can make your program more responsive
and interactive, as well as enhance performance

! You can create additional threads to run concurrent tasks in
the program.

! In Java, each task is an instance of the Runnable interface,
also called a runnable object. A thread is essentially an
object that facilitates the execution of a task

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 6

Creating Tasks and Threads

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 7

Example:
Using the Runnable Interface to Create

and Launch Threads
! Objective: Create and run three threads:

– The first thread prints the letter a 100 times.
– The second thread prints the letter b 100

times.
– The third thread prints the integers 1 through

100.

TaskThreadDemo Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 9

The Thread Class

The Thread class contains the constructors for creating threads for
tasks and the methods for controlling threads.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 10

The Static yield() Method
You can use the yield() method to temporarily release time
for other threads. For example, suppose you modify the
code in Lines 53-57 in TaskThreadDemo.java as follows:

public void run() {
for (int i = 1; i <= lastNum; i++) {
System.out.print(" " + i);
Thread.yield();

}
}

Every time a number is printed, the print100 thread is
yielded. So, the numbers are printed after the characters.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 11

The Static sleep(milliseconds) Method
The sleep(long mills) method puts the thread to sleep for the specified
time in milliseconds. For example, suppose you modify the code in
Lines 53-57 in TaskThreadDemo.java as follows:

public void run() {
for (int i = 1; i <= lastNum; i++) {

System.out.print(" " + i);
try {

if (i >= 50) Thread.sleep(1000);
}
catch (InterruptedException ex) {
}

}
}

Every time a number (>= 50) is printed, the print100 thread is put to
sleep for 1 second.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 12

The join() Method
You can use the join() method to force one thread to wait for another
thread to finish. For example, suppose you modify the code in Lines
53-57 in TaskThreadDemo.java as follows:

The numbers after 50 are printed after thread thread4 is finished.

printA.join()

-char token

+getToken
+setToken
+paintCompone
t
+mouseClicked

Thread
print100

-char token

+getToken
+setToken
+paintCompo
net
+mouseClicke
d

Wait for printA
to finish

+getToken
+setToken
+paintComponet

Thread
printA

-char token

+getToken
+setToken
+paintCompo
net
+mouseClicke
d

 printA finished

-char token

public void run() {
 Thread thread4 = new Thread(

new PrintChar('c', 40));
 thread4.start();
 try {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print(" " + i);
 if (i == 50) thread4.join();
 }
 }
 catch (InterruptedException ex) {
 }
}

Thread
print100

Thread
thread4

thread4 finished

Thread4.join()

Wait for thread4
to finish

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 13

isAlive(), interrupt(), and isInterrupted()
- The isAlive() method is used to find out the state of a
thread. It returns true if a thread is in the Ready, Blocked,
or Running state; it returns false if a thread is new and has
not started or if it is finished.

- The interrupt() method interrupts a thread in the
following way: If a thread is currently in the Ready or
Running state, its interrupted flag is set; if a thread is
currently blocked, it is awakened and enters the Ready
state, and an java.io.InterruptedException is thrown.

The isInterrupt() method tests whether the thread is
interrupted.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 14

The deprecated stop(), suspend(), and
resume() Methods

• NOTE: The Thread class also contains the stop(), suspend(), and
resume() methods.

• As of Java 2, these methods are deprecated (or outdated) because
they are known to be inherently unsafe.

• You should assign null to a Thread variable to indicate that it is
stopped rather than use the stop() method.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 15

Thread Priority
! Priorities are numbers ranging from 1 to 10. The

Thread class has the int constants MIN_PRIORITY,
NORM_PRIORITY, and MAX_PRIORITY,
representing 1, 5, and 10, respectively.

! Each thread is assigned a default priority of
Thread.NORM_PRIORITY. You can reset the priority
using setPriority(int priority).

! Some constants for priorities include
Thread.MIN_PRIORITY Thread.MAX_PRIORITY
Thread.NORM_PRIORITY

