
Taibah University
College of Computer Science & Engineering
Course Title: Theory of Computations
Code: CS 301

Chapter 4

Properties of Regular
Languages

Dr. Sultan E. Almaghthawi

Based on slides by: Dr. Abdelfatah Farawila

Text Book: Peter Linz, Introduction to Formal Languages and
automata 4th edition), 2006.

This presentation is for academic use only in Taibah
University, KSA

Closure Properties of Regular Languages

•Consider the following question:
Given two regular languages L1 and L2 , is their union also
regular? In specific instances, the answer may be obvious, but
here we want to address the problem in general.

• Is it true for all regular L1 and L2?
It turns out that the answer is yes, a fact we express by saying
that the family of regular languages is closed under union.

➔ This leads us to the study of the closure properties of
languages in general

2

Closure under Simple Set Operations

3

We begin by looking at the closure of regular languages
under the common set operations, such as union and
intersection.

Theorem 4.1

If L1 and L2 are regular languages, then so are L1 ∪ L2 ,
L1 ∩ L2 , L1L2 , , and . We say that the family of
regular languages is closed under union, intersection,
concatenation, complementation, and star-closure.

Closure Properties

Example 4.1

Show that the family of regular languages is closed under difference. In other
words, we want to show that if L1 and L2 are regular, then L1 − L2 is
necessarily regular also. The needed set identity is immediately obvious from
the definition of a set difference, namely

The fact that L2 is regular implies that is also regular. Then, because of the
closure of regular languages under intersection, we know that is regular,
and the argument is complete.

A variety of other closure properties can be derived directly by elementary
arguments

4

Closure Properties

Theorem 4.2

• The family of regular languages is closed under reversal.

• Proof: The proof of this theorem was suggested as an exercise in Section
2.3. Here are the details:

Suppose that L is a regular language. We then construct an nfa with a single
final state for it. By Exercise 7, Section 2.3, this is always possible. In the
transition graph for this nfa we make the initial vertex a final vertex, the final
vertex the initial vertex, and reverse the direction on all the edges. It is a
fairly straightforward matter to show that the modified nfa accepts wR if and
only if the original nfa accepts w.

➔ Therefore, the modified nfa accepts LR , proving closure under reversal.

5

Closure Properties

6

Closer Under Other operations

In addition to the standard operations on languages,
one can define other operations and investigate
closure properties for them. There are many such
results; we select only two typical ones. Others are
explored in the exercises at the end of this section.

Closure Properties

7

Suppose Σ and Γ are alphabets. Then a function

is called a homomorphism. In words, a homomorphism is a substitution in which
a single letter is replaced with a string. The domain of the function h is extended
to strings in an obvious fashion; if

then

Homomorphism

8

If L is a language on Σ, then its homomorphic image is defined as
L(h) = { h(w) : w ∊ ∑ }

Let Σ = {a, b, c} and Γ = {a, b, c,} define h by

h(a) = ab,
h(b) = bbc

Then h (aba) = abbbcab. The homomorphic image of
L = {aa, aba} is the language h (L) = {abab, abbbcab}.

Homomorphism

9

Homomorphism

Let h be a homomorphism. If L is a regular language, then its homomorphic
image h(L) is also regular. The family of regular languages is therefore closed
under arbitrary homomorphisms.

Proof: Let L be a regular language denoted by some regular expression r. We find
h(r) by substituting h(a) for each symbol a ∈ Σ of r. It can be shown directly by an
appeal to the definition of a regular expression that the result is a regular
expression. It is equally easy to see that the resulting expression denotes h(L). All
we need to do is to show that for every w ∈ L(r), the corresponding h (w) is in L (h
(r))

and conversely that every υ in L(h (r)) there is a w in L, such that υ = h (w).

Leaving the details as an exercise, we claim that h (L) is regular

10

Example

11

The strings in L2 consist of one or more b’s.

➔ Therefore, we arrive at the answer by removing one or more b’s
from those strings in L1 that terminate with at least one b.

12

Note that here L1 , L2 , and L1 /L2 are all regular.

This suggests that the right quotient of any two
regular languages is also regular

Right Quotient of Two Languages

Regular language & Regular Grammar

There exists an algorithm for determining whether a regular language,
given in standard representation, is empty, finite, or infinite.

Proof: The answer is apparent if we represent the language as a
transition graph of a dfa.

If there is a simple path from the initial vertex to any final vertex, then
the language is not empty. To determine whether or not a language is
infinite, find all the vertices that are the base of some cycle. If any of
these are on a path from an initial to a final vertex, the language is
infinite. Otherwise, it is finite.

13

Nonregular Languages

14

Regular languages can be infinite, as most of our examples
have demonstrated. The fact that regular languages are
associated with automata that have finite memory, however,
imposes some limits on the structure of a regular language.

Intuition tells us that a language is regular only if, in processing
any string, the information that has to be remembered at any
stage is strictly limited. This is true, but has to be shown
precisely to be used in any meaningful way. There are several
ways in which this can be done.

Nonregular Languages

15

The term “pigeonhole principle” is
used by mathematicians to refer to
the following simple observation:

If we put n objects into m boxes
(pigeonholes), and if n > m,
➔ then at least one box must have
more than one item in it. This is
such an obvious fact that it is
surprising how many deep results
can be obtained from it.

Nonregular Languages

16

Is the language L ={anbn : n ≥ 0} regular? The answer is no, as
we show using a proof by contradiction.

Suppose L is regular. Then some dfa M = (Q, {a, b},δ, q0 , F)
exists for it. Now look at δ* (q0 ,a i) for i = 1, 2, 3,…. Since
there are an unlimited number of i’s, but only a finite number
of states in M, the pigeonhole principle tells us that there
must be some state, say q, such that

δ*(q0, an) = q

And
δ*(q0, am) = q,

with n ≠ m. But since M accepts anbn we must have

δ*(q, bn) = qf ∊F

Nonregular Languages

17

From this we can conclude that

This contradicts the original assumption that M accepts ambn

only if n = m,

and leads us to conclude that L cannot be regular.

Cont.

Pumping Lemma

18

The following result, known as the pumping lemma for
regular languages, uses the pigeonhole principle in another
form.

The proof is based on the observation that in a transition
graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Pumping Lemma

19

Pumping Lemma

20

“ Even if we could show (and this is normally quite difficult)
that any pumped string must be in the original language, there
is nothing in the statement of Theorem 4.8 that allows us to
conclude from this that the language is regular.“

Use the pumping lemma to show that L = {anbn : n ≥ 0} is not
regular. Assume that L is regular, so that the pumping lemma must
hold. We do not know the value of m, but whatever it is, we can
always choose n = m. Therefore, the substring y must consist
entirely of a’s.
Suppose |y| = k. Then the string obtained by using i = 0 in Equation
(4.2) is

W0 = am-kbm

and is clearly not in L. This contradicts the pumping lemma and
thereby indicates that the assumption that L is regular must be
false.

Nonregular languages

21

Show that
L = wwR : w ∊ ∑

Is Regular
Whatever m the opponent picks on Step 1, we can always choose
a w as shown in Figure 4.5. Because of this choice, and the
requirement that |xy| ≤ m, the opponent is restricted in Step 3
to choosing a y that consists entirely of a’s.

In Step 4, we use i = 0. The string obtained in this fashion has
fewer a’s on the left than on the right and so cannot be of the
form wwR . Therefore, L is not regular.

