
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process

Synchronization

Chapter 6 in the 10th edition

5.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Outline

Background

The Critical-Section Problem

Peterson’s Solution

Hardware Support for Synchronization

Mutex Locks

Semaphores

5.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

Describe the critical-section problem and illustrate a race condition

Illustrate hardware solutions to the critical-section problem using memory barriers, compare-and-

swap operations, and atomic variables

Demonstrate how mutex locks, semaphores, monitors, and condition variables can be used to

solve the critical section problem

Evaluate tools that solve the critical-section problem in low-, Moderate-, and high-contention

scenarios

5.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

Processes can execute concurrently

May be interrupted at any time, partially completing execution

Concurrent access to shared data may result in data inconsistency

Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating

processes

We illustrated in chapter 4 the problem when we considered the Bounded Buffer problem with use of a

counter that is updated concurrently by the producer and consumer,. Which lead to race condition.

5.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

Processes P0 and P1 are creating child processes using the fork() system call

Race condition on kernel variable next_available_pid which represents the next available process

identifier (pid)

Unless there is a mechanism to prevent P0 and P1 from accessing the variable next_available_pid ,

the same pid could be assigned to two different processes!

5.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition(Cont.)

▪ counter++ could be implemented as
register1 = counter

register1 = register1 + 1

counter = register1

Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

RACE CONDITION: when several processes access and manipulate the same data concurrently and

the outcome depends on the particular order in the which the access takes place.

▪ counter-- could be implemented as
register2 = counter

register2 = register2 - 1

counter = register2

5.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

Consider system of n processes {p0, p1, … pn-1}

Each process has critical section segment of code

Process may be changing common variables, updating table, writing file, etc.

When one process in critical section, no other may be in its critical section

Critical section problem is to design protocol to solve this

Each process must ask permission to enter critical section in entry section, may follow critical

section with exit section, then remainder section

5.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

General structure of process Pi

5.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical-Section Problem (Cont.)

Requirements for solution to critical-section problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can

be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist some processes that

wish to enter their critical section, then the selection of the process that will enter the critical

section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other processes are allowed

to enter their critical sections after a process has made a request to enter its critical section and

before that request is granted

Assume that each process executes at a nonzero speed

No assumption concerning relative speed of the n processes

5.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical-Section Problem (Cont.)

C-S Solutions

Interrupt-based

SW

Peterson’s Algorithm

mutex lock

Semaphore

Synchronization Hardware Locks

Test & Set

Compare & Swap

5.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interrupt-based Solution

Entry section: disable interrupts

Exit section: enable interrupts

Will this solve the problem?

What if the critical section is code that runs for an hour?

Can some processes starve – never enter their critical section?

What if there are two CPUs?

5.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Software Solution 1

Two process solution

Assume that the load and store machine-language instructions are atomic; that is, cannot be

interrupted

The two processes share one variable:

int turn;

The variable turn indicates whose turn it is to enter the critical section

initially, the value of turn is set to i

5.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

while (true){

while (turn = = j);

/* critical section */

turn = j;

/* remainder section */

}

5.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Correctness of the Software Solution

Mutual exclusion is preserved

Pi enters critical section only if:

turn = i

and turn cannot be both 0 and 1 at the same time

What about the Progress requirement?

What about the Bounded-waiting requirement?

5.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

Two process solution

Assume that the load and store machine-language instructions are atomic; that is,

cannot be interrupted

The two processes share two variables:

int turn;

boolean flag[2]

The variable turn indicates whose turn it is to enter the critical section

The flag array is used to indicate if a process is ready to enter the critical section.

flag[i] = true implies that process Pi is ready!

5.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

while (true){

flag[i] = true;

turn = j;

while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}

5.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Correctness of Peterson’s Solution

Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

5.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

Many systems provide hardware support for implementing the critical section code.

Uniprocessors – could disable interrupts

Currently running code would execute without preemption

Generally, too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

5.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hardware Instructions

Special hardware instructions that allow us to either test-and-modify the content of a word, or to swap

the contents of two words atomically (uninterruptedly.)

Test-and-Set instruction

Compare-and-Swap instruction

5.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The test_and_set Instruction

Definition

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = true;

return rv:

}

Properties

Executed atomically

Returns the original value of passed parameter

Set the new value of passed parameter to true

5.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution Using test_and_set()

Shared boolean variable lock, initialized to false

Solution:

do {

while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

Does it solve the critical-section problem?

5.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The compare_and_swap Instruction

Definition

int compare_and_swap(int *value, int expected, int new_value)

{

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

Properties

Executed atomically

Returns the original value of passed parameter value

Set the variable value the value of the passed parameter new_value but only if *value ==

expected is true. That is, the swap takes place only under this condition.

5.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using compare_and_swap

Shared integer lock initialized to 0;

Solution:

while (true){

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

}

Does it solve the critical-section problem?

5.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

Previous solutions are complicated and generally inaccessible to application programmers

OS designers build software tools to solve critical section problem

Simplest is mutex lock

Boolean variable indicating if lock is available or not

Protect a critical section by

First acquire() a lock

Then release() the lock

Calls to acquire() and release() must be atomic

Usually implemented via hardware atomic instructions such as compare-and-swap.

But this solution requires busy waiting

This lock therefore called a spinlock

5.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to CS Problem Using Mutex Locks

while (true) {

acquire lock

critical section

release lock

remainder section

}

5.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore

Synchronization tool that provides more sophisticated ways (than Mutex locks) for processes to synchronize
their activities.

Semaphore S – integer variable

Can only be accessed via two indivisible (atomic) operations

wait() and signal()

 Originally called P() and V()

Definition of the wait() operation

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

Definition of the signal() operation

signal(S) {

S++;

}

5.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore (Cont.)

Counting semaphore – integer value can range over an unrestricted domain

Binary semaphore – integer value can range only between 0 and 1

Same as a mutex lock

Can implement a counting semaphore S as a binary semaphore

With semaphores we can solve various synchronization problems

5.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage Example

Solution to the CS Problem

Create a semaphore “mutex” initialized to 1

wait(mutex);

CS

signal(mutex);

Consider P1 and P2 that with two statements S1 and S2 and the requirement that S1 to happen before

S2

Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

5.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation

Must guarantee that no two processes can execute the wait() and signal() on the

same semaphore at the same time

Thus, the implementation becomes the critical section problem where the wait and signal

code are placed in the critical section

Could now have busy waiting in critical section implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical sections and therefore this is not a good

solution

5.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy waiting

With each semaphore there is an associated waiting queue

Each entry in a waiting queue has two data items:

Value (of type integer)

Pointer to next record in the list

Two operations:

block – place the process invoking the operation on the appropriate waiting queue

wakeup – remove one of processes in the waiting queue and place it in the ready queue

5.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Problems with Semaphores

Incorrect use of semaphore operations:

signal(mutex) …. wait(mutex)

wait(mutex) … wait(mutex)

Omitting of wait (mutex) and/or signal (mutex)

These – and others – are examples of what can occur when semaphores and other synchronization

tools are used incorrectly.

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 5

