Taibah University
College of Computer Science and Engineering Department of Computer Science

Form A

Mid $1-1^{\text {st }}$ Semester (2020/2021)

CS 301 Theory of Computation

Date: Thursday - 29/10/2020
Time: 09:00 AM
Total: 20 Marks
Duration: one hour

Student Name:
Student No.:
Section:

Instructions to students:

1. MCQs answers are to be in the table on next page.
2. This is a closed-book, closed-note examination (NO examination materials).
3. Mobile phones, calculators and any electronic device are not allowed in this exam.
4. ...
5.

For instructors:

CLO	Questions	Assigned marks	Awarded marks
1.1	$\begin{gathered} \mathrm{MCQ}(1-4,8-11) \\ \text { Part2, (1) } \end{gathered}$	4	
1.2	$\begin{gathered} \text { MCQ (7, 12-14) } \\ \text { Part2, (2) } \end{gathered}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	
1.4	Part2, (3,4)	4	
		\ldots	
2.1	Part2, (6)	2	
		\ldots	
		...	
2.2	Part2, (5, 7)	4	
	\ldots	\ldots	
Total		...	

Part 1 [0.5 mark for each question]

1- Let $\sum=\{a, b\}$ is an alphabet and the language $L=\left\{a^{n} b^{n}: n>=1\right\}$ is a language on \sum. Find the first (smallest) four strings in L. CLO1.1

A		λ, ab, abab, abaaba
B		ab, aabb , aaabbb , aaaabbbb
C		λ, ab, aabb , aaabbbb
D		None of the above

2- Let the language $L=\{\lambda, a b, a a b b\}$. Find its reverse; L^{R} ? CLO1.1

A		$L^{R}=\left\{\sum^{*}, b a, b b a a\right\}$
B		$L^{R}=\{\lambda, b a, b a b a\}$
C		$L^{R}=\{\lambda, b a, b b a a\}$
D		None of the above

3- Consider the grammar $\mathrm{G}=\{\{\mathrm{S}\}$, $\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P}\}$ where P is given by the following production rule: $\mathrm{S} \rightarrow \mathrm{aSb} \mid \lambda$. Does this grammar accept the sentence: $a a b$? CLO1.1

A		Yes
B		No

4- For the grammar in question 3 ; it generates the language $\mathrm{L}(\mathrm{G})$ which can be described as: CLO1.1

A	$L(G)=\left\{a^{n} b^{n}: n>=0\right\}$	
B		$L(G)=\left\{a^{n} b^{n}: n>=1\right\}$
C		$L(G)=\left\{a^{n} b^{m}: n>=0, m>=0\right\}$
D		None of the above

5- The DFA shown in the next figure, has the following regular expression: CLO2.2

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\left(a^{*} b\right) .(a+b)^{*}$	$\left(a^{*} b\right) .(a+b) .(a+b)^{*}$	$\left(a^{*} b\right)$	None of the above

a

Describe the language represented by the DFA in the next figure: CLO2.2

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}}: \mathrm{n}>=0\right\}$	$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}}: \mathrm{n}>=5\right\}$	$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}}: \mathrm{n}>=4\right\}$	$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}}: \mathrm{n}>=0, \mathrm{n} \neq 4\right\}$

7- What is the language that can be generated by the next grammar? CLO1.2

A	$\mathrm{L}=\{\lambda, a b, a b a b, a b a b a b, \ldots\}$
B	$\mathrm{L}=\{a b, a a b b, a a a b b b, \ldots\}$
C	$\mathrm{L}=\{\lambda, a b, a a b b, a a a b b b, \ldots\}$
D	$\mathrm{L}=\{a b, a b a b, a b a b a b, \ldots\}$

$\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P}) ;$
$\mathrm{S} \rightarrow \mathrm{aA} ;$
$\mathrm{A} \rightarrow \mathrm{bB} ;$
$\mathrm{B} \rightarrow \mathrm{aA} \mid \lambda$

8- The DFA shown in the next Figure describes the following language: CLO1.1

A	Every string starts and ends with the same letter.
B	Every string starts and ends with a different letter.
C	Every string contains only a's or b's but not both
D	Every string must contain some a letters and some b letters.

9- The language of the NFA shown in the next figure is: CLO1.1

A	$L=\{\lambda, a b, a b b, a b b b, a b b b b, \ldots, b b, b b b, b b b b, \ldots\}$
B	$L=\{a, a b, a b b, a b b b, a b b b b, \ldots, b, b b, b b b, b b b b, \ldots\}$
C	$L=\{\lambda, a, a b, a b b, a b b b, a b b b b, \ldots, b, b b, b b b, b b b b, \ldots\}$
D	$L=\{\lambda, a b, a b b, a b b b, a b b b b, \ldots, b, b b b, b b b b b, \ldots\}$

10- If the alphabet $\Sigma=\{0,1\}$, the regular expression $\mathbf{r}=(\mathbf{0}+\mathbf{1})^{*} \cdot(\mathbf{0}+\mathbf{1 1})$ denotes the following language: CLO1.1

\mathbf{A}	$\{\lambda, 0,1,00,01,10,11, \ldots\}$	\mathbf{B}	$\{0,1,00,01,10,11, \ldots\}$
\mathbf{C}	$\{0,11,00,011,10,111, \ldots\}$	\mathbf{D}	$\{11,011,110,111,0001, \ldots\}$

11- The set of all strings on $\{0,1\}$, terminated by either an $\underline{0}$ or $\underline{11}$ is denoted by CLO1.1

A	$(0.1)^{*}(0.11)$	B	$(0+1)^{*}(0+11)$
C	$(0+1)^{+}(0+11)$	D	$((0+1)(0+11))^{*}$

12- If the alphabet $\Sigma=\{0,1\}$, the regular expression $\underline{r}=(0+1)^{*} .0(0+1) * 0 .(0+1)^{*}$ denotes the following language: CLO1.2

A	$\mathrm{L}=\left\{\mathrm{w} \in \Sigma^{*}:\right.$ w has only two 0's. $\}$	B	$\mathrm{L}=\left\{\mathrm{w} \in \Sigma^{*}: \mathrm{w}\right.$ has at most two 0's. $\}$
C	$\mathrm{L}=\left\{\mathrm{w} \in \Sigma^{*}:\right.$ w has at least two consecutive 0's $\}$	D	$\mathrm{L}=\left\{\mathrm{w} \in \Sigma^{*}: \mathrm{w}\right.$ has at least two 0's $\}$

13- If the expression, $(a+b . c)^{*}$ stands for the star-closure of $\{a\} u\{b c\}$. Then, which of the following language will be generated? CLO1.2

| A | $\{\lambda, a, b c, a a, a b c, b c a, b c b c, a a a, a a b c, \ldots\}$ | B | $\{\lambda, a, b c, a a, a b c, c b a, b c b c, a a a, a a b c, \ldots\}$ |
| :---: | :--- | :--- | :---: | :---: |
| C | $\{\lambda, a, c b, a a, a b c, b c a, b c b c, a a a, a a b c, \ldots\}$ | D | $\{a, b c, a a, a b c, b c a, b c b c, a a a, a a c b, \ldots\}$ |

14- The language generated by the Grammar: $\mathrm{S} \rightarrow \mathrm{AS}_{1}, \mathrm{~S}_{1} \rightarrow \mathrm{aS}_{1} \mathrm{~b}|\lambda, \mathrm{~A} \rightarrow \mathrm{aA}| \mathrm{a}$ is: CLO1.2

A	$\mathrm{L}(\mathrm{G})=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}: \mathrm{n}>\mathrm{m}\right\}$
B	$\mathrm{L}(\mathrm{G})=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}: \mathrm{n} \geq \mathrm{m}\right\}$
C	$\mathrm{L}(\mathrm{G})=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}: \mathrm{n}=\mathrm{m}\right\}$
D	$\mathrm{L}(\mathrm{G})=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}: \mathrm{n}<\mathrm{m}\right\}$

Fill the following table with the final selections (the table only will be checked):

1	2	3	4	5	6	7	8	9	10	11	12	13	14

Part 2

1- If the alphabet $\Sigma=\{a, b\}$, the regular expression $\mathbf{r}=(\mathbf{a}+\mathbf{b})^{*} .(\mathbf{a}+\mathbf{b b})$. Create the shortest four strings of this language [1 marks] CLO1.1:
a, aa, ba, bb,

2- Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $\mu=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and h is defined as: \quad [2 marks] CLO1.2
$h(a)=\mathrm{ab}$,
$h(b)=\mathrm{bbc}$.
If $\mathrm{L}=\{\mathrm{aa}, \mathrm{aba}\}$, Find $h(L)$
$h(L)=$
\{abab, abbbcab \}

3- If $L=\left\{a^{n} b^{n}: n>=0\right\}$, then $L^{2}=\left\{a^{n} b^{n} a^{m} b^{m}: n>=0, m>=0\right\}$

4- Let $\mathrm{L}=\{\mathrm{ab}, \mathrm{aa}, \mathrm{baa}\}$, what are the shortest three strings in L^{*} ? [2 marks] CLO1.4

5- Create the language associated with the regular expression $\quad \mathrm{r}=(\mathrm{aa}) * \mathrm{a}(\mathrm{bb}) * \mathrm{~b} \quad$ [2 marks] CLO2.2

Answer
$\mathrm{L}(\mathrm{r})=\left\{\mathrm{a}^{2 \mathrm{n}+1} \mathrm{~b}^{2 \mathrm{~m}+1}: \mathrm{n} \geq 0, \mathrm{~m} \geq 0\right\}$

6- Create the Regular Expression associated with the NFA of Figure 4 [2 mark] CLO2.1

Figure 4

Answer

$$
a^{*} a\left(b+b a^{*} a\right)^{*} \quad \text { OR } \quad a^{+}\left(b+b a^{+}\right)^{*}
$$

7- Construct DFA for the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}: \mathrm{n} \geq 0\right\} \quad$ [2 marks] CLO2.2
Answer

