

_

Taibah University College of Computer Science and Engineering Department of Computer Science

Mid 1 – 1st Semester (2020/2021)

CS 301 Theory of Computation

Date: Thursday - 29/10/2020		Total: 20 Marks
Time: 09:00 AM		Duration: one hour
Student Name:	Student No.:	Section:

Instructions to students:

- 1. MCQs answers are to be in the table on next page.
- 2. This is a closed-book, closed-note examination (NO examination materials).
- 3. Mobile phones, calculators and any electronic device are not allowed in this exam.
- 4. ...
- 5. ...

For instructors:

CLO	Questions	Assigned marks	Awarded marks
1.1	MCQ (1-4, 8-11) Part2, (1)	4 1	
1.2	MCQ (7, 12-14) Part2, (2)	3 2	
1 /	Part2, (3,4)	4	
1.4			
	Part2, (6)	2	
2.1			
2.2	Part2, (5, 7)	4	
2.2			
	Total		

Part 1 [0.5 mark for each question]

1- Let $\sum = \{a, b\}$ is an alphabet and the language $L = \{a^n \ b^n : n > = 1\}$ is a language on \sum . Find the first (smallest) four strings in L. CLO1.1

	/	
А		λ , ab, abab , abaaba
В		ab, aabb , aaabbbb
С		λ , ab, aabb , aaabbbb
D		None of the above
2- Let th	e language	$L = \{\lambda, ab, aabb\}$. Find its reverse; L^R ? CLO1.1
А		$L^{R} = \{ \sum^{*}, ba, bbaa \}$
В		$L^{R} = \{ \lambda, ba, baba \}$
С		$L^{R} = \{ \lambda, ba, bbaa \}$
D		None of the above
2 Consi	dor the grou	$a_{max} = (S) (a b) (S)$ where D is given by the following production rule: $S = S = (A + A)$

3- Consider the grammar G ={ {S}, {a,b}, S, P} where P is given by the following production rule:S→aSb| λ. Does this grammar accept the sentence: *aab*? CLO1.1

А		Yes
В		No
4- For th	e grammar	in question 3; it generates the language L(G) which can be described as: CLO1.1
A		$L(G) = \{ a^n b^n : n > = 0 \}$
В		$L(G) = \{ a^n b^n : n > = 1 \}$
C		$L(G) = \{ a^n b^m : n > = 0, m > = 0 \}$
D		None of the above

5- The DFA shown in the next figure, has the following regular expression: CLO2.2

$(a^*b).(a+b)^*$ $(a^*b).(a+b).(a+b)^*$ (a^*b) None of the above	А	В	С	D
	$(a^*b).(a+b)^*$	(a*b).(a+b).(a+b)*	(a*b)	None of the above

6- Describe the language represented by the DFA in the next figure: CLO2.2

Α	В	С	D
$L = \{ a^n : n >= 0 \}$	$L = \{ a^n : n \ge 5 \}$	$L = \{ a^n : n \ge 4 \}$	$L = \{ a^n : n \ge 0, n \neq 4 \}$

7- What is the language that can be generated by the next grammar? CLO1.2

А	$L = \{\lambda, ab, abab, ababab,\}$
В	L = {ab, aabb, aaabbb,}
С	$L = \{\lambda, ab, aabb, aaabbb,\}$
D	L = {ab, abab, ababab, }

А

С

 $(0+1)^+(0+11)$

 $G=(\{S, A, B\}, \{a,b\}, S, P);$ $S \rightarrow aA;$ $A \rightarrow bB;$ $B \rightarrow aA \mid \lambda$

8- The DFA shown in the next Figure describes the following language: CLO1.1

А	Every string starts and ends with the same letter.
В	Every string starts and ends with a different letter.
C	Every string contains only a's or b's but not both
D	Every string must contain some a letters and some b letters.

$L{=}$ { a, ab, abb, abbb, abbbb,,b, bb, bbb, b
$L{=}$ { $\lambda,$ a, ab, abb, abbb, abbbb,,b, bb, bbb, b
L= { λ , ab, abb, abbb, abbbb,, b, bbb, bbb

10- If the alphabet $\Sigma = \{0,1\}$, the regular expression $\mathbf{r} = (\mathbf{0} + \mathbf{1})^* \cdot (\mathbf{0} + \mathbf{11})$ denotes the following language: CLO1.1

Α	{ λ , 0, 1, 00, 01, 10, 11,}	В		{0,1,00,01,10,11,}
С	{0,11,00,011,10,111,}	D		{ 11,011,110,111,0001,}
11- The	e set of all strings on { 0, 1 }, terminated by eith	ner an <u>(</u>	<u>)</u> or	<u>11</u> is denoted by CLO1.1
А	(0.1)*(0.11)	В	(0+	+1)*(0+11)

12- If the alphabet $\Sigma = \{0, 1\}$, the regular expression $\underline{r} = (0+1)^* \cdot 0 \cdot (0+1)^* \cdot 0 \cdot (0+1)^*$ denotes the following language: CLO1.2

D

	8			
	А	$L = \{ w \in \Sigma^*: w \text{ has only two } 0\text{'s.} \}$	В	$L = \{ w \in \Sigma^* \text{ w has at most two 0's.} \}$
ſ	С	$L = \{w \in \Sigma^*: w \text{ has at least two consecutive } 0's\}$	D	$L = \{w \in \Sigma^*: w \text{ has at least two 0's} \}$

((0+1) (0+11))*

13- If the expression, (a+b.c)* stands for the star-closure of {a} U {bc}. Then, which of the following language will be generated? CLO1.2

А	{ λ , a , bc , aa , abc , bca , $bcbc$, aaa , $aabc$,}	В	$\{\lambda, a, bc, aa, abc, cba, bcbc, aaa, aabc,\}$
С	$\{\lambda, a, cb, aa, abc, bca, bcbc, aaa, aabc,\}$	D	{ a, bc, aa, abc, bca, bcbc, aaa, aacb,}

14- The language generated by the Grammar: $S \rightarrow AS_1$, $S_1 \rightarrow aS_1b \mid \lambda$, $A \rightarrow aA \mid a$ is: CLO1.2

A	$L(G) = \{a^{-} D^{-} : n > m\}$
В	$L(G) = \{a^n b^m : n \ge m\}$
С	$L(G) = \{a^n b^m : n = m\}$
D	$L(G) = \{a^n b^m : n < m\}$

Fill the following table with the final selections (the table only will be checked):

1	2	3	4	5	6	7	8	9	10	11	12	13	14

Part 2

1- If the alphabet $\Sigma = \{a, b\}$, the regular expression $\mathbf{r} = (\mathbf{a} + \mathbf{b})^* \cdot (\mathbf{a} + \mathbf{b}\mathbf{b})$. Create the shortest four strings of this language [1 marks] CLO1.1:

a, aa, ba, bb,

2- Let $\Sigma = \{a,b\}$ and $\mu = \{a,b,c\}$ and *h* is defined as: [2 marks] CLO1.2 h(a) = ab, h(b) = bbc. If $L = \{aa, aba\}$, Find h(L)

h(L) =

{abab, abbbcab}

3- If $L = \{a^nb^n : n \ge 0\}$, then $L^2 = \{a^nb^n a^mb^m : n \ge 0, m \ge 0\}$

[2 marks] CLO1.4

4- Let L = {ab, aa, baa}, what are the shortest three strings in L^* ? [2 marks] CLO1.4

 $\{\lambda, ab, aa\}$

5- Create the language associated with the regular expression r = (aa)*a(bb)*b [2 marks] CLO2.2

Answer

 $L(r) = \{a^{2n+1}b^{2m+1} : n \ge 0, m \ge 0\}$

6- Create the Regular Expression associated with the NFA of Figure 4 [2 mark] CLO2.1

Answer

 $a^* a(b+ba^*a)^*$ **OR** $a^+ (b+ba^+)^*$

7- Construct DFA for the language L= {aⁿb: $n \ge 0$ } [2 marks] CLO2.2 Answer

