

Computer Security CS433

Chapter 12
 Cryptography

Objectives

Methods of Cryptanalysis

Cryptanalysis is the act of studying a cryptographic algorithm, its implementation, plaintext, ciphertext, and any other available information to try to break the protection of encryption

Cryptanalyst can attempt to do ...

\checkmark Break (decrypt) a single message
\checkmark Recognize patterns in encrypted messages
\checkmark Infer some meaning without even breaking the encryption, such as from the length or frequency of messages
\checkmark Easily deduce the key to break one message and perhaps subsequent ones
\checkmark Find weaknesses in the implementation or environment of use of encryption by the sender
\checkmark Find general weaknesses in an encryption algorithm

Cryptanalysis Inputs

Attack models for the cryptanalysis

$>$ Ciphertext only
\checkmark Look for patterns, similarities, and discontinuities among many messages that are encrypted alike
$>$ Plaintext and ciphertext, so the cryptanalyst can see what transformations occurred
\checkmark Known plaintext-the analyst has an exact copy of the plaintext and ciphertext
\checkmark Probable plaintext-message is very likely to have certain content, such as a date header
\checkmark Chosen plaintext-the attacker gains sufficient access to the system to generate ciphertext from arbitrary plaintext inputs

Cryptographic Primitives

Substitution

One set of bits is exchanged for another

Transposition

Rearranging the order of the ciphertext to break any repeating patterns in the underlying plaintext

Confusion

An algorithm providing good confusion has a complex functional relationship between the plaintext/key pair and the ciphertext, so that changing one character in the plaintext causes unpredictable changes to the resulting ciphertext.

Diffusion

Distributes the information from single plaintext characters over the entire ciphertext output, so that even small changes to the plaintext result in broad changes to the ciphertext

One-Time Pads

\checkmark A substitution cipher
\checkmark Uses an arbitrarily large, nonrepeating set of keys

$$
\checkmark \text { (E.g. Vernam cipher) }
$$

\checkmark Offers no patterns to analyze
\checkmark Useful as a concept but completely impractical

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	12	22	23	24	25

Making 'Good" Encryption Algorithms

What Makes a "Secure" Encryption Algorithm?

What does it mean for a cipher to be "good"?

- The meaning of good depends on the intended use of the cipher
- A cipher to be used by military personnel in the field has different requirements from one to be used in a secure installation with substantial computer support

Shannon's Characteristics of "Good" Ciphers

1. The amount of secrecy needed should determine the amount of labor appropriate for the encryption and decryption.

Shannon's Characteristics of "Good" Ciphers

2. The set of keys and the enciphering algorithm should be free from complexity
\checkmark If the process is too complex, it will not be used
\checkmark Choice of keys \& the types of plaintext should not be restricted

- An algorithm that works only on plaintext having an equal number of A's and E's is useless
- Requiring the key to be a prime number is challenging
\checkmark Furthermore, the key must be transmitted, stored, and remembered so it must be short..

Shannon's Characteristics of 'Good" Ciphers

3. The implementation of the process should be as simple as possible
\checkmark A complicated algorithm is prone to error or likely to be forgotten
\checkmark People tend to avoid an encryption algorithm if its implementation process severely hinders message transmission
\checkmark Not to mention, a complex algorithm is more likely to be programmed incorrectly.

Shannon's Characteristics of "Good" Ciphers

4. The size of the enciphered text should be no larger than the text of the original message
\checkmark ciphertext that expands dramatically in size cannot possibly carry more information than the plaintext
\checkmark it gives the cryptanalyst more data from which to infer a pattern
\checkmark longer ciphertext implies more space for storage and more time to communicate

Shannon's Characteristics of "Good" Ciphers

5. Errors in ciphering should not propagate and cause corruption of further information in the message

- One error early in the process should not throw off the entire remaining ciphertext
- For example, dropping one letter in a columnar transposition throws off the entire remaining encipherment

Those characteristics have been proposed in 1949, Do you think it is still valid?

Properties of a Trustworthy Cryptosystem

An encryption system is "commercial grade," or "trustworthy," we mean that it meets these constraints

- It is based on sound mathematics.
- It has been analyzed by competent experts and found to be sound.
- It has stood the test of time

Three algorithms are popular in the commercial world and meet the above criteria:

- DES (data encryption standard)
- AES (advanced encryption standard)
- RSA (Rivest Shamir Adelman)

DES

The Data EncryptionStandard

DES

\checkmark Developed for the U.S. government in 1976
\checkmark Intended for use by general public.
\checkmark Accepted as a standard both in the US and abroad.
\checkmark Many hw and sw systems have been designed to accommodate the DES
\checkmark However, recently its adequacy has been questioned.

$\mathbf{2}$ stages: key preparation and message encryption

\checkmark Input message is divided into blocks of 64 bits
\checkmark The data bits are permuted by an "initial permutation"
\checkmark The 64 permuted data bits are broken into a left half and right half
\checkmark The 32-bit right half is expanded to 48 bits by repeating certain bits
\checkmark The key is reduced from 64 bits to 56 bits (parity bits are removed)
\checkmark The key is reduced to 48 bits by choosing only certain bits \checkmark according to tables called S-boxes
\checkmark The key is shifted left by a number of bits and also permuted
\checkmark The key is combined with the right half, which is then combined with the left half
\checkmark The result of these combinations becomes the new right half, while the old right half becomes the new left half.

DES Decryption Equation

$$
\begin{gather*}
\mathrm{L}_{j}=\mathrm{R}_{j-1} \tag{1}\\
\mathrm{R}_{j}=\mathrm{L}_{j-1} \oplus f\left(\mathrm{R}_{j-1}, k_{j}\right) \tag{2}
\end{gather*}
$$

By rewriting these equations in terms of R_{j-1} and L_{j-1}, we get

$$
\begin{equation*}
\mathbf{R}_{j-1}=\mathrm{L}_{j} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{L}_{j-1}=\mathrm{R}_{j} \oplus f\left(\mathrm{R}_{j-1}, k_{j}\right) \tag{4}
\end{equation*}
$$

Substituting (3) into (4) gives

$$
\begin{equation*}
\mathrm{L}_{j-1}=\mathrm{R}_{j} \oplus f\left(\mathrm{~L}_{j}, k_{j}\right) \tag{5}
\end{equation*}
$$

DES

\rightarrow Decryption

DES Weakness

Suppose... Zelda can see the ciphertext form and she knows where to look for the different fields.

Fabricated Transfer Messages (Possible Attack)

she can create new messages, to transfer money from Annie and Carole to her account

1 Aug	Annie	Zelda	0001	100.00
apqrwx	w2z\%pr	cd4wx7	wenh55	3dhop3
1 Aug	Carole	Zelda	0002	500.00

apqrwx

Chaining

DES uses the same process for each 64-bit block, so two identical blocks encrypted with the same key will have identical output

This provides too much information to an attacker, as messages that have common beginnings or endings, for example, are very common in real life, as is reuse of a single key over a series of transactions

The solution to this problem is chaining, which makes the encryption of each block dependent on the content of the previous block as well as its own content

Simple Chaining Example

ciphertext

Still there is a problem!!!

Initialization Vectors

AES

Advanced Encryption System

Because of the concerns about the fixed-sized key of DES and the fact that computing power was continually increasing against that stationary target, security analysts began to search for a replacement for DES

Structure of AES

The algorithm is based on arithmetic in the finite field GF(2 8), but most encryption operations can be done by table lookup, thereby simplifying the implementation of AES.

\checkmark The block size of AES is 128 .
\checkmark AES consists of 10,12 or 14 cycles, for a 128-, 192-, or 256-bit key, respectively.
\checkmark Each cycle (called a "round" in the algorithm).
\checkmark Steps for AES:

- Convert to state array
- Transformations (and their inverses)
- AddRoundKey
- SubBytes
- ShiftRows
- MixColumns
- Key Expansion

Structure of AES

Convert to State Array

Input block:

Convert to State Array

Eg. Plain Text : AES USES A MATRIX ZZ
Hexadecimal : $00041214120412000 C 00131108231919$

State			
00	12	$0 C$	08
04	04	00	23
12	12	13	19
14	00	11	19

State representation

AddRoundKey

XOR each byte of the round key with its corresponding byte in the state array

SubBytes

- Replace each byte in the state array with its corresponding value from the S-Box

[^0]
SubBytes

State			
00	12	$0 C$	08
04	04	00	23
12	12	13	19
14	00	11	19

$14 \underset{\text { Column } 4}{\text { Row } 1} \mathrm{FA}$

	0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
0	63	7 C	77	7B	F2	6B	6 F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	6	47	F0	AD	D4	A2	AF	9 C	A4	72	co
2	B7	FD	93	26	30	JF	F7	cc	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2 C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2 F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9 F	A8
7	51	A3	40	8 F	92	9 D	38	F5	BC	B6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5 F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4 F	DC	22	2A	90	88	46	EE	B8	14	DE	5 E	0B	DB
A	E0	32	3A	OA	49	06	24	5 C	C2	D3	AC	62	91	95	E4	79
B	E7	C8	37	6D	8D	D5	4 E	A9	6C	56	F4	EA	65	7A	AE	08
c	BA	78	25	2E	1 C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	B5	66	48	03	F6	OE	61	35	57	B9	86	C1	1D	9 E
E	E1	F8	98	11	69	D9	8 E	94	9B	1 E	87	E9	CE	55	28	DF
F	8 C	A1	89	OD	BF	E6	42	68	41	99	2D	OF	B0	54	BB	16

ShiftRows

\checkmark Last three rows are cyclically shifted

		$\mathrm{S}_{0,0}$	$\mathrm{~S}_{0,1}$	$\mathrm{~S}_{0,2}$	$\mathrm{~S}_{0,3}$
		$\mathrm{~S}_{1,0}$	$\mathrm{~S}_{1,0}$	$\mathrm{~S}_{1,1}$	$\mathrm{~S}_{1,2}$
	$\mathrm{~S}_{2,0}$	$\mathrm{~S}_{1,3}$			
$\mathrm{~S}_{2,1}$	$\mathrm{~S}_{2,0}$	$\mathrm{~S}_{2,1}$	$\mathrm{~S}_{2,2}$	$\mathrm{~S}_{2,3}$	
$\mathrm{~S}_{3,0}$	$\mathrm{~S}_{3,1}$	$\mathrm{~S}_{3,2}$	$\mathrm{~S}_{3,0}$	$\mathrm{~S}_{3,1}$	$\mathrm{~S}_{3,2}$

ShiftRows

MixColumns

\checkmark Apply MixColumn transformation to each column

MixColumns

$$
\begin{aligned}
& \mathrm{S}_{0, \mathrm{c}}^{\prime}=\left(\{02\} \bullet \mathrm{S}_{0, \mathrm{c}}\right) \oplus\left(\{03\} \bullet \mathrm{S}_{1, \mathrm{c}} \oplus \mathrm{~S}_{2, \mathrm{c}} \oplus \mathrm{~S}_{3, \mathrm{c}}\right. \\
& \mathrm{S}_{1, \mathrm{c}}^{\prime}=\mathrm{S}_{0, \mathrm{c}} \oplus\left(\{ 0 2 \} \bullet \mathrm { S } _ { 1 , \mathrm { c } } \oplus \left(\left\{\left(\{03\} \bullet \mathrm{S}_{2, \mathrm{c}}\right) \oplus \mathrm{S}_{3, \mathrm{c}}\right.\right.\right. \\
& \mathrm{S}_{2, \mathrm{c}}^{\prime}=\mathrm{S}_{0, \mathrm{c}} \oplus \mathrm{~S}_{1, \mathrm{c}} \oplus\left(\{02\} \bullet \mathrm{S}_{2, \mathrm{c}} \oplus\left(\{03\} \bullet \mathrm{S}_{3, \mathrm{c}}\right)\right. \\
& \mathrm{S}_{3, \mathrm{c}}^{\prime}=\left(\{03\} \bullet \mathrm{S}_{0, \mathrm{c}}\right) \oplus \mathrm{S}_{1, \mathrm{c}} \oplus \mathrm{~S}_{2, \mathrm{c}} \oplus\left(\{02\} \bullet \mathrm{S}_{3, \mathrm{c}}\right)
\end{aligned}
$$

Key Expansion

\checkmark Expands the key material so that each round uses a unique round key

- Generates $\mathrm{Nb}(\mathrm{Nr}+1)$ words
- Nb is the number of words in an AES block
- Nr is the number of rounds

Word: A group of 32 bits that is treated either as a single entity or as an array of 4 bytes

Expanded Key Sizes in Words		
Key Length (Nk words)	Number of Rounds $(\mathbf{N} \boldsymbol{r})$	Exp. Key Size $(\mathbf{N} \boldsymbol{b}(\mathbf{N} \boldsymbol{r}+\mathbf{1})$ words)
4	10	44
6	12	52
8	14	60

Key Expansion

Encrypt and Decrypt

Longevity of AES

\checkmark Since its initial publication in 1997, AES has been extensively analyzed, and the only serious challenges to its security have been highly specialized.
\checkmark Because there is an evident underlying structure to AES, it will be possible to use the same general approach on a slightly different underlying problem to accommodate keys larger than 256 bits when necessary
\checkmark No attack to date has raised serious question as to the overall strength of AES

RSA

Rivest Shamir Adelman

RSA

\checkmark Asymmetric Encryption
\checkmark RSA has been the subject of extensive cryptanalysis since 1978

- no serious flaws have yet been found
\checkmark The encryption algorithm is based on the underlying problem of factoring large prime numbers
- a problem for which the fastest known algorithm is exponential in time
\checkmark Two keys, d and e, are used for decryption and encryption (they are interchangeable)
- The plaintext block P is encrypted as $P^{e} \bmod n$
- The decrypting key d is chosen so that $\left(P^{e}\right)^{d} \bmod n=P$

Detailed Description of RSA

The RSA algorithm uses two keys, d and e, which work in pairs, for decryption and encryption, respectively. A plaintext message P is encrypted to ciphertext C by

$$
C=P^{e} \bmod n
$$

The plaintext is recovered by

$$
P=C^{d} \bmod n
$$

Because of symmetry in modular arithmetic, encryption and decryption are mutual inverses and commutative. Therefore,

$$
P=C^{d} \bmod n=\left(P^{e}\right)^{d} \bmod n=\left(P^{d}\right)^{e} \bmod n
$$

This relationship means that one can apply the encrypting transformation and then the decrypting one, or the decrypting one followed by the encrypting one.

Prime and Coprime numbers

\checkmark Prime numbers are divisible only by the number 1 or itself.
\checkmark For example, 2, 3, 5, 7 and 11 are the first few prime numbers.
\checkmark Two integers a and b are said to be relatively prime, if the only positive integer (factor) that divides both of them is 1

Deriving an RSA Key Pair

1. The encryption key consists of the pair of integers (e, n), and the decryption key is (d, n)
2. The value of n should be quite large, a product of two primes, p and q

- Typically, p and q are nearly 100 digits each, so n is approximately 200 decimal digits (about 512 bits) long.
- A large value of n effectively inhibits factoring n to infer p and q (but time to encrypt increases as the value of n grows larger)

3. A relatively large integer e is chosen so that e is relatively prime to $(p-1) *(q-1)$. An easy way to guarantee that e is relatively prime to $(p-1) *(q-1)$ is to choose e as a prime that is larger than both $(p-1)$ and $(q-1)$
4. Finally, select d such that $e * d=1 \bmod (p-1) *(q-1)$
5. Due to increased computing power, 2048-bit keys are becoming a standard requirement

RSA

A very simple example of RSA encryption

1. Select primes $\mathbf{p}=\mathbf{1 1}, \mathbf{q}=\mathbf{3}$
2. Compute $\mathbf{n}=\mathbf{p}^{*} \mathbf{q}=11 * 3=33$
3. Compute $(\mathrm{p}-1) *(\mathrm{q}-1)=10 * 2=20$
4. Choose $\mathrm{e}=3, \quad 1<3<20$
5. Check $\operatorname{gcd}(e,(p-1 * q-1))=\operatorname{gcd}(3,20)=1$
(i.e. 3 and 20 have no common factors except 1).
6. Compute d such that $\mathrm{e}^{*} \mathrm{~d} \equiv 1(\bmod (\mathrm{p}-1)(\mathrm{q}-1))$
i.e. compute $\quad 3 * d=1 \bmod 20$. We get $d=7$
7. Public key $=(\mathrm{e}, \mathrm{n})=(3,33)$

Private key $=(\mathrm{d}, \mathrm{n})=(7,33)$.

Message Digests

\checkmark Message digests are ways to detect changes to a block of data

\checkmark One-way hash functions are cryptographic functions with multiple uses:

- They are used in conjunction with public-key algorithms for both encryption and digital signatures
- They are used in integrity checking
- They are used in authentication
- They are used in communications protocols
\checkmark Modern hash functions meet two criteria:
- They are one-way, meaning they convert input to a digest, but it is infeasible to start with a digest value and infer the input
- They do not have obvious collisions, meaning that it is infeasible to find a pair of inputs that produce the same digest

Properties of Current Hash Standards

Algorithm	Maximum Message Size (bits)	Block Size (bits)	Rounds	Message Digest Size (bits)
MD5	2^{64}	512	64	128
SHA-1	2^{64}	512	80	160
SHA-2-224	2^{64}	512	64	224
SHA-2-256	2^{64}	512	64	256
SHA-2-384	2^{128}	1024	80	384
SHA-2-512	2^{128}	1024	80	512
SHA-3-256	unlimited	1088	24	256
SHA-3-512	unlimited	576	24	512

Digital Signatures

Digital signatures must meet two requirements and, ideally, satisfy two more:

Digital Signatures

Elliptic Curve Cryptosystems

\checkmark While the RSA algorithm appears sufficiently strong, it has a different kind of flaw: It is patented
\checkmark An alternative form of asymmetric cryptography comes in the form of Elliptic Curve Cryptography (ECC)
\checkmark ECC has two advantages over RSA:

- While some technologies using ECC are patented, the general algorithm is in the public domain.
- ECC can provide similar security to RSA using a shorter key length.

Quantum Cryptography

\checkmark Based on physics, not mathematics- using light particles called photons.
\checkmark It relies on ability to measure certain properties of photons and on Heisenberg's uncertainty principle

- allows senders and receivers in quantum communication to easily detect eavesdroppers
\checkmark Implementations still in the prototype stage
- creating practical photon guns and receivers is technically difficult
\checkmark While still not ready for adoption, quantum cryptography may be practical within the next decade
- would likely be a significant improvement over existing

https://images.app.goo.gl/Cc4BX2Q5zCwHHG599 systems for encrypted communication

Summary

Substitution, transposition, confusion, and diffusion are the basic primitives of cryptography

DES is a relatively simple symmetric algorithm that, although no longer practical, is useful for studying technique

Chaining and random initialization vectors are important techniques
for preventing ciphertext repetition

While not yet ready for mainstream use, quantum cryptography will likely be a significant improvement over modern encrypted communication

[^1] RIGHTS RESERVED

Extra Information

Initial permutation

- $1^{\text {st }}$ bit take $40^{\text {th }}$ position
- $58^{\text {th }}$ bits take $1^{\text {st }}$ position

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Expansion of 32 bits:

- 32 bit RH is divided into 8 blocks of 4 bits
- Expand each 4-bits block to 6-bits block

Example 011011
$011011 \rightarrow$
\rightarrow
101

S_{5}		Middle 4 bits of input															
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Outer bits	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

[^0]: FROM SECURITY IN COMPUTING, FIFTH EDITION, BY CHARLES P. PFLEEGER, ET AL. (ISBN: 9780134085043). COPYRIGHT 2015 BY PEARSON EDUCATION, INC. ALL

[^1]: FROM SECURITY IN COMPUTING, FIFTH EDITION, BY CHARLES P. PFLEEGER, ET AL. (ISBN: 9780134085043). COPYRIGHT 2015 BY PEARSON EDUCATION, INC. ALL

