Digital Image Processing

Image Enhancement (Spatial Filtering 2)

Course Website: http://www.comp.dit.ie/bmacnamee

Contents

In this lecture we will look at more spatial filtering techniques

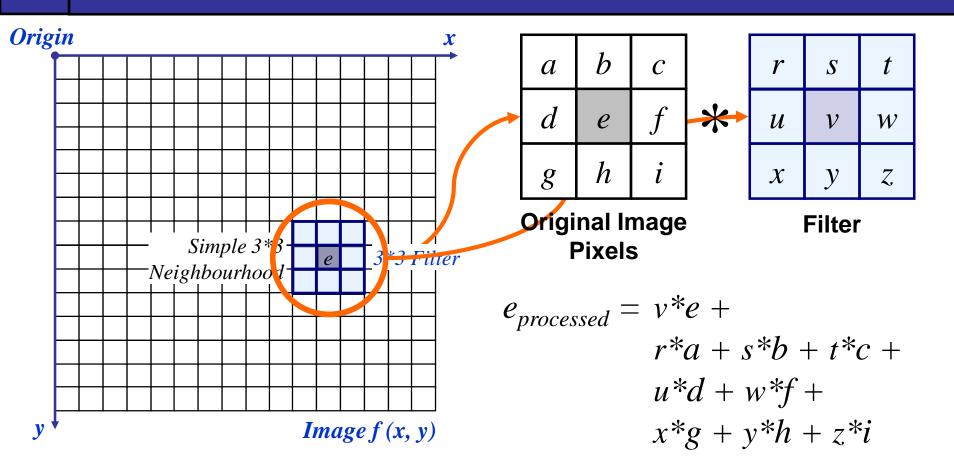
- Spatial filtering refresher
- Sharpening filters

2

of

- 1st derivative filters
- 2nd derivative filters
- Combining filtering techniques

Spatial Filtering Refresher



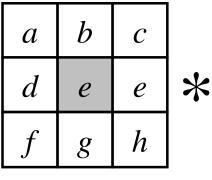
The above is repeated for every pixel in the original image to generate the smoothed image

3 of 30

Correlation & Convolution

•The filtering we have been talking about so far is referred to as *correlation* with the filter itself referred to as the *correlation kernel*

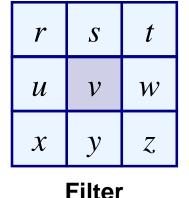
•*Convolution* is a similar operation, with just one subtle difference



4

of

30



Original Image Pixels

 $e_{processed} = v^*e + z^*a + y^*b + x^*c + w^*d + u^*e + t^*f + s^*g + r^*h$

For symmetric filters it makes no difference

Correlation & Convolution

 Correlation and Convolution are basic operations that we will perform to extract information from images.

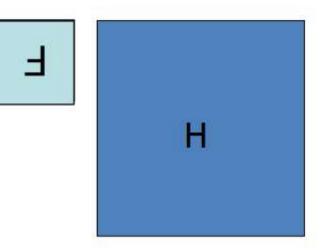
5

of

- Cross-correlation means sliding a kernel (filter) across an image.
- Convolution means sliding a flipped kernel across an image

Convolution

 $G = H \underset{\uparrow}{\star} F$ Notation for convolution operator



Previously we have looked at smoothing filters which remove fine detail

Sharpening spatial filters seek to highlight fine detail

- Remove blurring from images
- Highlight edges

7

of

30

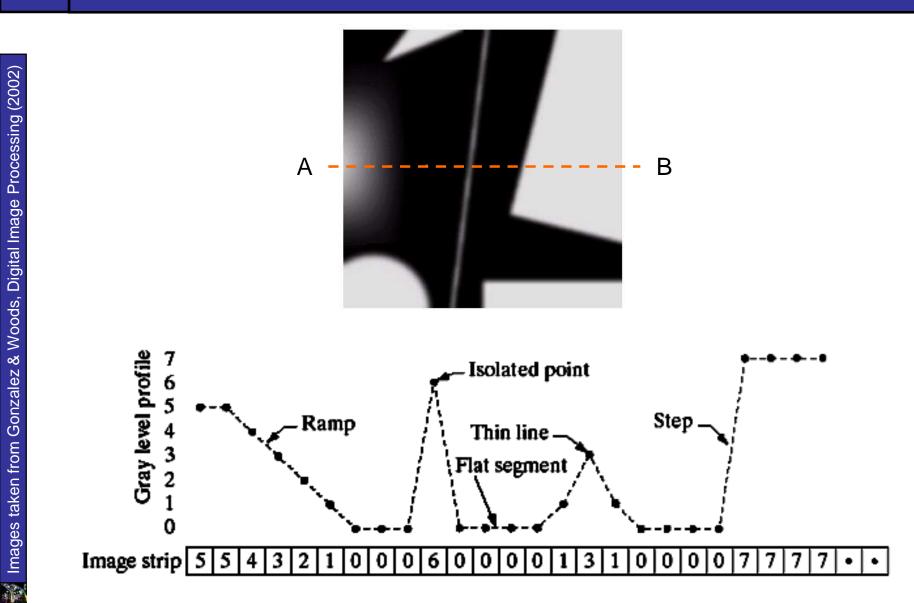
Sharpening filters are based on *spatial differentiation*

Spatial Differentiation

Differentiation measures the *rate of change* of a function

Let's consider a simple 1 dimensional example

Spatial Differentiation



9

of

1st Derivative

The formula for the 1st derivative of a function is as follows:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

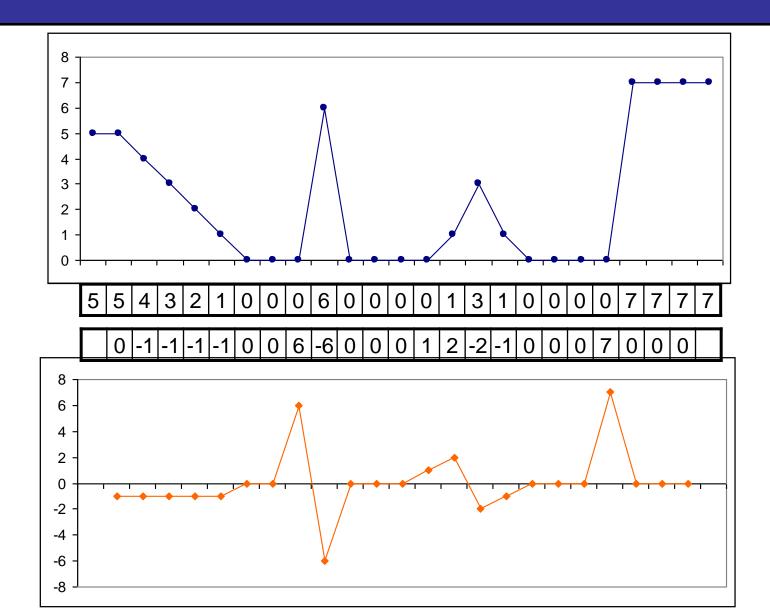
10

of

30

It's just the difference between subsequent values and measures the rate of change of the function

1st Derivative (cont...)



11 of 30

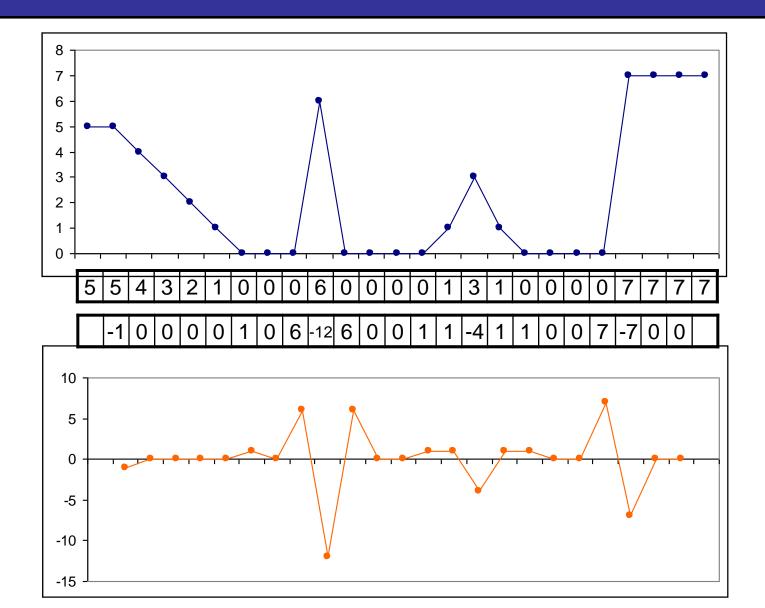
2nd Derivative

The formula for the 2nd derivative of a function is as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1) + f(x-1) - 2f(x)$$

Simply takes into account the values both before and after the current value

2nd Derivative (cont...)



13 of 30 Using Second Derivatives For Image Enhancement

The 2nd derivative is more useful for image enhancement than the 1st derivative

- Stronger response to fine detail
- Simpler implementation
- We will come back to the 1st order derivative later on

The first sharpening filter we will look at is the *Laplacian*

- Isotropic
- One of the simplest sharpening filters
- We will look at a digital implementation

The Laplacian

The Laplacian is defined as follows:

15

of

30

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

where the partial 1^{st} order derivative in the x direction is defined as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$

and in the *y* direction as follows:

$$\frac{\partial^2 f}{\partial^2 y} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

So, the Laplacian can be given as follows:

$$\nabla^2 f = [f(x+1, y) + f(x-1, y) + f(x, y-1)] + f(x, y+1) + f(x, y-1)] - 4f(x, y)$$

We can easily build a filter based on this

0	1	0
1	-4	1
0	1	0

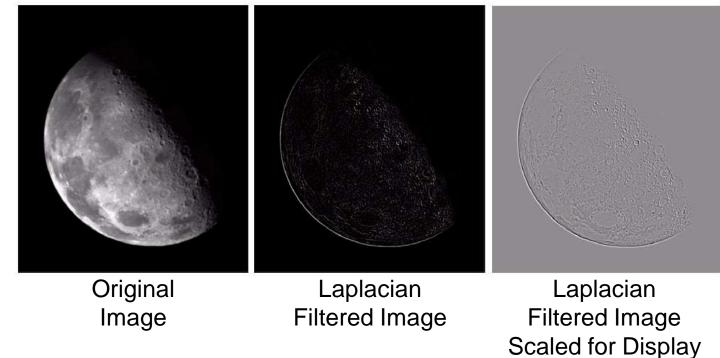
The Laplacian (cont...)

17

Of

30

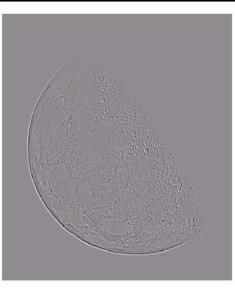
Applying the Laplacian to an image we get a new image that highlights edges and other discontinuities



But That Is Not Very Enhanced!

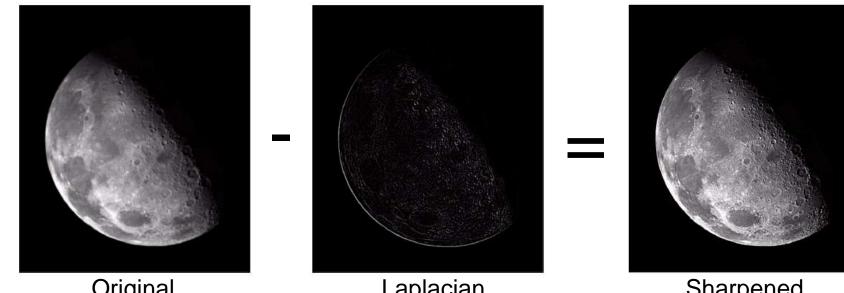
The result of a Laplacian filtering is not an enhanced image We have to do more work in order to get our final image Subtract the Laplacian result from the original image to generate our final sharpened enhanced image

$$g(x, y) = f(x, y) - \nabla^2 f$$



Laplacian Filtered Image Scaled for Display

Laplacian Image Enhancement



Original Image Laplacian Filtered Image

Sharpened Image

In the final sharpened image edges and fine detail are much more obvious

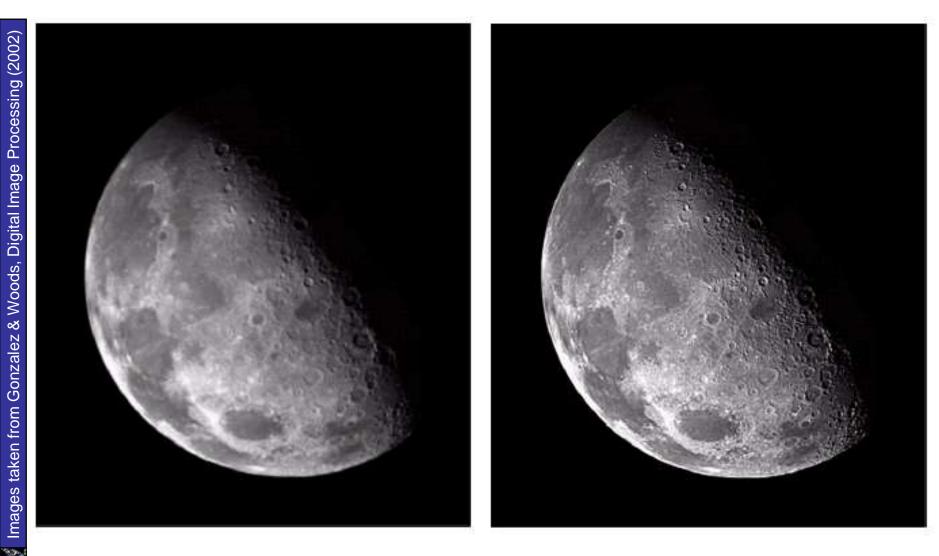
19

of

Laplacian Image Enhancement

20

of



21

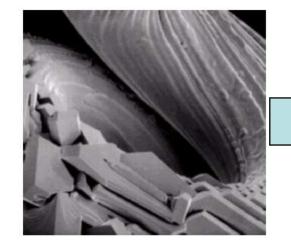
of

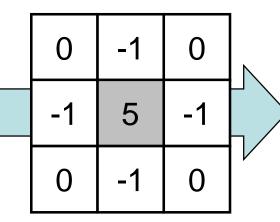
30

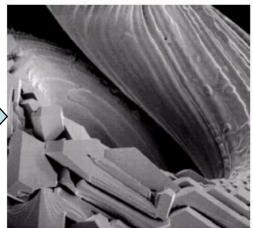
The entire enhancement can be combined into a single filtering operation $g(x, y) = f(x, y) - \nabla^2 f$ = f(x, y) - [f(x+1, y) + f(x-1, y)]+ f(x, y+1) + f(x, y-1)-4f(x, y)] =5f(x, y) - f(x+1, y) - f(x-1, y)-f(x, y+1) - f(x, y-1)

Simplified Image Enhancement (cont...)

This gives us a new filter which does the whole job for us in one step



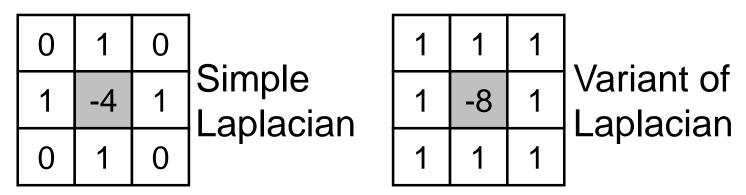


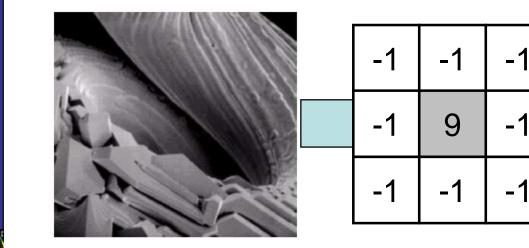


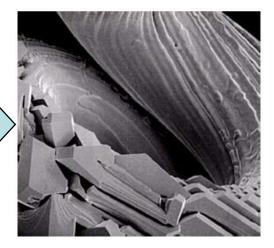
Simplified Image Enhancement (cont...)

Variants On The Simple Laplacian

There are lots of slightly different versions of the Laplacian that can be used:





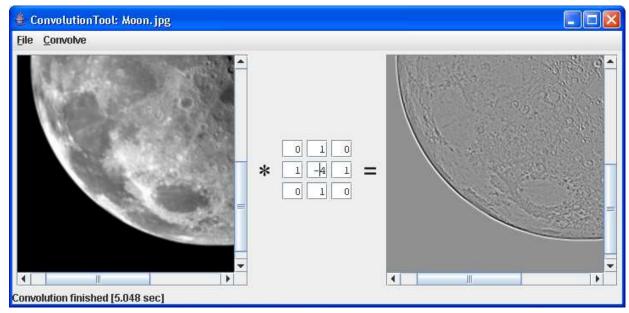


A great tool for testing out different filters

25

of

- From the book "Image Processing tools in Java"
- Available from webCT later on today
- To launch: java ConvolutionTool Moon.jpg



Implementing 1st derivative filters is difficult in practice

For a function f(x, y) the gradient of f at coordinates (x, y) is given as the column vector:

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

26 of 30 The magnitude of this vector is given by:

27

of

30

$$\nabla f = mag(\nabla f)$$
$$= \left[G_x^2 + G_y^2 \right]^{\frac{1}{2}}$$
$$= \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right]^{\frac{1}{2}}$$

For practical reasons this can be simplified as: $\nabla f \approx |G_x| + |G_y|$ There is some debate as to how best to calculate these gradients but we will use: $\nabla f \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)|$ $+ |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$

which is based on these coordinates

28

of

Z ₁	Z ₂	Z ₃
Z ₄	Z ₅	Z ₆
Z ₇	Z ₈	Z ₉

Sobel Operators

Based on the previous equations we can derive the *Sobel Operators*

29

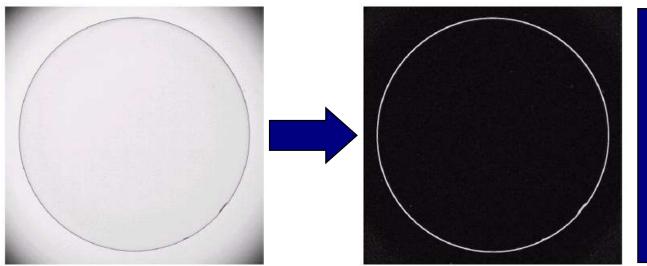
of

30

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

To filter an image it is filtered using both operators the results of which are added together

Sobel Example



An image of a contact lens which is enhanced in order to make defects (at four and five o'clock in the image) more obvious

Sobel filters are typically used for edge detection

Comparing the 1st and 2nd derivatives we can conclude the following:

- 1st order derivatives generally produce thicker edges
- 2nd order derivatives have a stronger response to fine detail e.g. thin lines
- 1st order derivatives have stronger response to grey level step
- 2nd order derivatives produce a double response at step changes in grey level

Summary

In this lecture we looked at:

- Sharpening filters
 - 1st derivative filters
 - 2nd derivative filters
- Combining filtering techniques

Combining Spatial Enhancement Methods

33

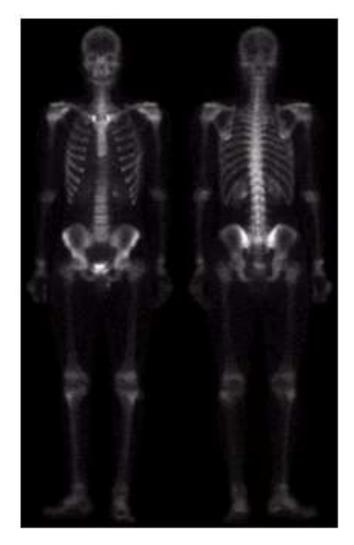
of

30

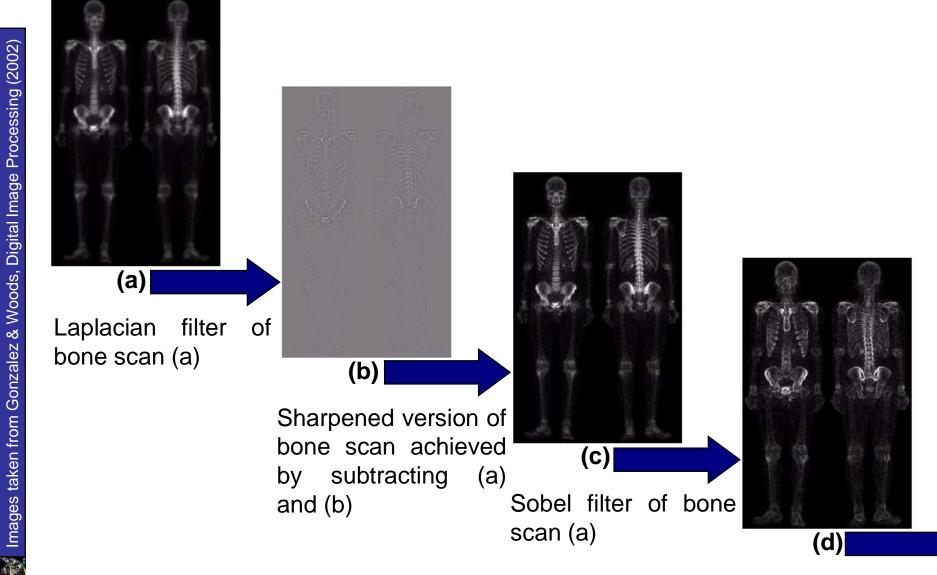
Successful image enhancement is typically not achieved using a single operation

Rather we combine a range of techniques in order to achieve a final result

This example will focus on enhancing the bone scan to the right



Combining Spatial Enhancement Methods (cont...)



34

of

Combining Spatial Enhancement Methods (cont...)

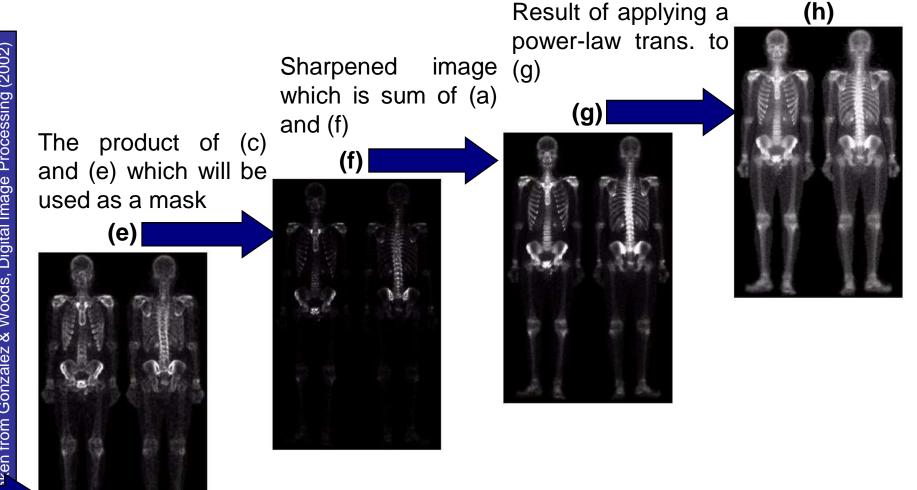


Image (d) smoothed with a 5*5 averaging filter

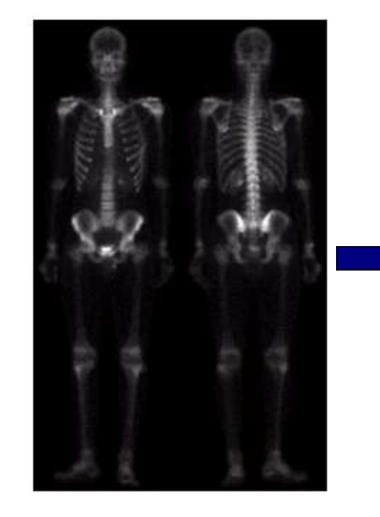
💓 Imag-

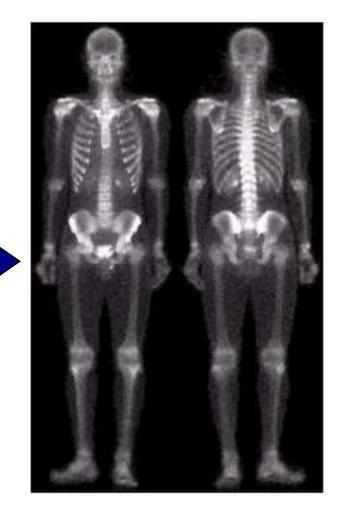
35

of

Combining Spatial Enhancement Methods (cont...)

Compare the original and final images





36

of