
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

Process Concept

Process Scheduling

Operations on Processes

Interprocess Communication

3.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

To introduce the notion of a process -- a program in execution, which forms the basis of all

computation

To describe the various features of processes, including scheduling, creation and termination,

and communication

3.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

An operating system executes a variety of programs:

Batch system – jobs

Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost interchangeably

Process – a program in execution; process execution must progress in sequential fashion

A process will need certain resources — such as CPU time, memory, files, and I/O devices —to
accomplish its task.

These resources are allocated to the process either when it is created or while it is executing.

3.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process in Memory

The structure of a process in memory is represented in

multiple parts

The program code, also called text section

Current activity including program counter,

processor registers

Stack containing temporary data

 Function parameters, return addresses, local

variables

Data section containing global variables

Heap containing memory dynamically allocated

during run time

3.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept (Cont.)

A program by itself is not a process!

A program is a passive entity, such as a file containing a list of instructions stored on disk

(executable file),

In contrast, a process is an active entity.

Program becomes process when executable file loaded into memory

Execution of program started via GUI mouse clicks, or command line entry of its name.

One program can be several processes; for example:

Consider multiple users executing the same program.

The same user may invoke many copies of the web browser program. Each of these is a

separate process; and although the text sections are equivalent, the data, heap, and stack

sections vary.

3.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

As a process executes, it changes state

The state of a process is defined by the current activity of that process.

A process may be in one of the following five states:

new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur

ready: The process is waiting to be assigned to a processor

terminated: The process has finished execution

3.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

State Description

New The process is being created

Running Instructions are being executed

Waiting The process is waiting for some event to occur (such as an I/O completion or reception of a signal)

Ready The process is waiting to be assigned to a processor

Terminated The process has finished execution

3.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Each process is represented in the operating system by a process

control block (PCB) (also called task control block)

➢ Process state – running, waiting, etc

➢ Program counter – location of instruction to next execute

➢ CPU scheduling information- priorities, scheduling queue pointers

➢ Memory-management information – memory allocated to the process

➢ Accounting information – CPU used, clock time elapsed since start, time

limits

➢ I/O status information – I/O devices allocated to process, list of open files.

➢ CPU registers – contents of all process-centric registers. Along with the

program counter, this state information must be saved when an interrupt

occurs, to allow the process to be continued correctly afterward.

3.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threads

So far, a process has a single thread of execution.

➢ For example, when a process is running a word-processor program, a single thread of

instructions is being executed.

➢ This single thread of control allows the process to perform only one task at a time.

➢ The user cannot simultaneously type in characters and run the spell checker within the same

process!

Consider having multiple program counters per process

Multiple locations can execute at once

 Multiple threads of control -> threads

→ and thus, perform more than one task at a time.

Must have storage for thread details, multiple program counters in PCB

3.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

The objective of multiprogramming is to have some process always running, to maximize CPU

utilization.

The objective of time-sharing is to switch the CPU among processes so frequently that users

can interact with each program

Process scheduler selects among available processes for next execution on CPU

Maintains scheduling queues of processes

Job queue – set of all processes in the system

Ready queue – set of all processes residing in main memory, ready and waiting to execute

Device queues – set of processes waiting for an I/O device

Processes migrate among the various queues

3.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

Queueing diagram represents queues,

resources, flows

A new process is initially put in the ready queue.

It waits there until it is selected for execution or

dispatched. Once the process is allocated the

CPU and is executing, one of several events

could occur:

• The process could issue an I/O request and

then moved to I/O queue.

• The process could create a new child

process and wait for the child’s termination.

• The process could be removed forcibly from

the CPU, as a result of an interrupt, and be

put back in the ready queue.

3.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

Short-term scheduler (or CPU scheduler) – selects which process should be executed next

and allocates CPU

Sometimes the only scheduler in a system

Short-term scheduler is invoked frequently (milliseconds) (must be fast)

Long-term scheduler (or job scheduler) – selects which processes should be brought into the

ready queue

Long-term scheduler is invoked infrequently (seconds, minutes) (may be slow)

The long-term scheduler controls the degree of multiprogramming (the number of

processes in memory)

Processes can be described as either:

I/O-bound process – spends more time doing I/O than computations, many short CPU

bursts

CPU-bound process – spends more time doing computations; few very long CPU bursts

Long-term scheduler strives for good process mix

3.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium-Term Scheduling

Medium-term scheduler can be added if degree of multiple programming needs to decrease

Remove process from memory, store on disk, bring back in from disk to continue execution:

swapping

3.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multitasking in Mobile Systems

Some mobile systems (e.g., early version of iOS) allow only one process to run, others

suspended

Apple probably limits multitasking due to battery life and memory use concerns.

Due to screen real estate, user interface limits iOS provides for a

Single foreground process- controlled via user interface

Multiple background processes– in memory, running, but not on the display, and with limits

Limits include single, short task, receiving notification of events, specific long-running tasks like

audio playback

Android runs foreground and background, with fewer limits

Background process uses a service to perform tasks

Service can keep running even if background process is suspended

Service has no user interface, small memory use

3.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch

When CPU switches to another process, the system must save the state of the old process

and load the saved state for the new process via a context switch (i.e., This task is known as

a context switch.)

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work while switching

The more complex the OS and the PCB ➔ the longer the context switch

Time dependent on hardware support

Some hardware provides multiple sets of registers per CPU ➔ multiple contexts loaded at

once

3.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations on Processes

System must provide mechanisms for:

Process creation,

Process termination,

3.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

Parent process creates children processes, which, in turn create other processes, forming a

tree of processes

Generally, process identified and managed via a process identifier (pid)

Resource sharing options

Parent and children share all resources

Children share subset of parent’s resources

Parent and child share no resources

Execution options

Parent and children execute concurrently

Parent waits until children terminate

3.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

3.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

fork system call creates new process

exec system call is used after a fork system call by one of the two processes to replace the

process’s memory space with a new program

The parent waits for the child process to complete

When the child process completes the parent process resumes

This is illustrated in the figure

3.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

Example1.

How many processes are created by the following fork calls?

What is the output- assuming parent processes wait until children terminate?

fork();
cout<<“Hi”<<endl;
fork();
cout<<“OK”<<endl;

P0

P3P1

P2

Hi
OK
OK
Hi
OK
OK

3.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

Example2.

How many processes are created by the following fork calls?

What is the output- assuming parent processes wait until children terminate?

id = fork();
if(id>0)
cout<<“Hi”<<endl;

else{
fork();
cout<<“OK”<<endl;

}

P0

P1

P2

OK
OK
Hi

3.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

Exercise.

How many processes are created by the following fork calls?

What is the output- assuming parent processes wait until children terminate?

id = fork();
if(id>0)
cout<<“Hi”<<endl;

else{
fork();
cout<<“OK”<<endl;

}
fork();
cout<<“Done”<<endl;

3.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

Process executes last statement and then asks the operating system to delete it using the
exit() system call.

Returns status data from child to parent (via wait())

Process’ resources are deallocated by operating system

Parent may terminate the execution of children processes using the abort() system call.

Some reasons for doing so:

Child has exceeded allocated resources

Task assigned to child is no longer required

The parent is exiting and the operating systems does not allow a child to continue if its

parent terminates

3.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

Some operating systems do not allow child to exists if its parent has terminated. If a process

terminates, then all its children must also be terminated.

cascading termination. All children, grandchildren, etc. are terminated.

The termination is initiated by the operating system.

The parent process may wait for termination of a child process by using the wait()system

call.

3.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

Processes within a system may be independent processes or cooperating processes.

A process is independent if it cannot affect or be affected by the other processes executing in

the system.

Cooperating process can affect or be affected by other processes, including sharing data.

3.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Cooperating Processes advatages

There are several reasons for providing an environment that allows process cooperation:

3.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications Models

❑ Cooperating processes need interprocess communication (IPC) mechanism that will allow them to

exchange data and information.

❑ Two models of IPC

Shared memory and Message passing

(a) Message passing. (b) shared memory.

3.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Shared Memory

An area of memory shared among the processes that wish to communicate

The communication is under the control of the communicating processes not the
operating system.

Major issues is to provide mechanism that will allow the cooperating processes to
synchronize their actions when they access shared memory (i.e., ensuring that they are
not writing to the same location simultaneously)

Synchronization is discussed in great details in Chapter 5.

3.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

Mechanism for processes to communicate and to synchronize their actions

Message system – processes communicate with each other without the need have shared
variables

IPC facility provides two operations:

send(message)

receive(message)

The message size is either fixed or variable

If processes P and Q wish to communicate, they need to:

Establish a communication link between them

Exchange messages via send/receive

3.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer-Consumer Paradigm

Paradigm for cooperating processes, producer process produces information that is consumed

by a consumer process

Information, messages, are placed in a buffer

unbounded-buffer places no practical limit on the size of the buffer

bounded-buffer assumes that there is a fixed buffer size

Roughly speaking, the interaction follows the pattern below.

More in chapter 5.

message next_produced;

while (true) {

/* produce an item in next produced */

send(next_produced);

}

message next_consumed;

while (true) {

receive(next_consumed);

/* consume the item in next consumed */

}

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 3

