
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 7: Deadlocks

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 7: Deadlocks

! System Model
! Deadlock Characterization
! Methods for Handling Deadlocks
! Deadlock Prevention
! Deadlock Avoidance

! Sections from the textbook: 7.1, 7.2, 7.3, 7.4, and 7.5

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter Objectives

! To develop a description of deadlocks, which prevent sets of
concurrent processes from completing their tasks.

! To present a number of different methods for preventing or avoiding
deadlocks in a computer system.

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock

! In a multiprogramming environment, several processes may compete for a
finite number of resources.

! A process requests resources.
if the resources are not available à the process enters a waiting state

! A waiting process is never again able to change state.
àbecause the requested resources are held by other waiting processes.

This situation is called a deadlock.

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Model

! A system consists of a finite number of resources to be distributed
among a number of competing processes.

! Resource types R1, R2, . . ., Rm
Resources can be either:
o (physical) CPU cycles, memory space, I/O devices(printers, DVD drivers)
o (logical) semaphores, mutex locks, Files.

! The resources may be partitioned into several types (or classes), each
consisting of some number of identical instances
Ø Each resource type Ri has Wi instances.
Ø The resource classes/types must be defined properly.

! Each process utilizes a resource as the following sequence:
! request
! use
! Release

! A deadlock may involve the same resource type or different resource
types.

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Characterization

! Mutual exclusion: only one process at a time can use a resource

! Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes

! No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

! Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes such that P0 is waiting for a resource that is held by P1,
P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting for
a resource that is held by Pn, and Pn is waiting for a resource that
is held by P0.

Deadlock can arise if four conditions hold simultaneously.
All four conditions must hold for a deadlock to occur

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Resource-Allocation Graph

! V is partitioned into two types:
! P = {P1, P2, …, Pn}, the set consisting of all the processes

in the system (Circles)

! R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system (Rectangles)

! E can be divided into:
! request edge – directed edge Pi à Rj

(a request edge points to only the rectangle Rj)
! assignment edge – directed edge Rj à Pi

(an assignment edge must also designate one of the dots in the rectangle)

A directed graph that has a set of vertices V and a set of edges E.

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph (Cont.)

! Process

! Resource Type with 4 instances

! Pi requests instance of Rj

! Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of a Resource Allocation Graph

Is there a deadlock?

The sets P, R,and E:
P={P1, P2, P3}
R={R1,R2, R3, R4}
E={P1→ R1, P2→ R3, R1→ P2, R2→ P2 ,R2→ P1 ,R3→ P3}

If the graph contains no cycles, then no process in the system is deadlocked.
If the graph contains a cycle, then a deadlock may or may not exist.

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource Allocation Graph With A Deadlock

In this example, two cycles exist in the system:
• P1→ R1→ P2→ R3→ P3→ R2→ P1

• P2→ R3→ P3→ R2→ P2

Processes P1, P2, and P3 are deadlocked

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Graph With A Cycle

Here, we also have a cycle:
P1→ R1→ P3→ R2→ P1

Is there a deadlock?

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Facts

! If graph contains no cycles à no deadlock

! If graph contains a cycle
! if only one instance per resource type, then deadlock
! if several instances per resource type, possibility of deadlock

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Methods for Handling Deadlocks

! Methods for Handling Deadlocks:
! Ensure that the system will never enter a deadlock state:

4 Deadlock prevention
4 Deadlock avoidance

! Allow the system to enter a deadlock state and then recover

! Ignore the problem and pretend that deadlocks never occur in the
system; used by most operating systems, including UNIX

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Prevention

! Mutual Exclusion – must hold for non-sharable resources, e.g., a printer
ènot required for sharable resources (e.g., read-only files);

! Hold and Wait – must guarantee that whenever a process requests a
resource, it does not hold any other resources

To achieve that, two protocols:
1. Require a process to request and be allocated all its resources

before it begins execution, (no wait)
2. Allow a process to request resources only when the process has

none allocated to it. (no hold)

⌦ Low resource utilization; starvation possible

Ø A deadlock to occur, when each of the four necessary conditions holds.
1.Mutual exclusion 2.Hold and wait 3. No preemption 4.Circular wait.

Ø By ensuring that at least one of these conditions cannot hold, we can prevent the
occurrence of a deadlock.

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Prevention (Cont.)

! No Preemption –
! If a process that is holding some resources requests another

resource that cannot be immediately allocated to it, then all
resources currently being held are released

! Preempted resources are added to the list of resources for which
the process is waiting

! Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting

⌦ This protocol is often applied to resources whose state can be easily
saved and restored later, such as CPU registers and memory space.

! Circular Wait – impose a total ordering of all resource types, and
require that each process requests resources in an increasing order of
enumeration.

7.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Avoidance

! It requires that the operating system be given additional information in advance
concerning which resources a process will request and use during its lifetime.

! For example, in a system with one CD drive and one printer, the system might need to know that process P will request
first the CD drive and then the printer before releasing both resources, whereas process Q will request first the printer
and then the CD drive. With this knowledge of the complete sequence of requests and releases for each process, the
system can decide for each request whether or not the process should wait in order to avoid a possible future deadlock.

! Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need

! The deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that there can never be a circular-wait condition

! Resource-allocation state is defined by the number of available and allocated
resources, and the maximum demands of the processes

7.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safe State

! A state is safe if the system can allocate resources to each process (up to
its maximum) in some order and still avoid a deadlock.

! System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL
the processes in the systems such that for each Pi, the resources that Pi
can still request can be satisfied by currently available resources +
resources held by all the Pj, with j < i

! That is:
! If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished
! When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate
! When Pi terminates, Pi +1 can obtain its needed resources, and so on
! If no such sequence exists, then the system state is said to be unsafe.

7.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Facts

! If a system is in safe state à no deadlocks

! If a system is in unsafe state àpossibility of deadlock

! Avoidance = ensure that a system will never enter an unsafe state.

! Initially, the system is in a safe state.
! Whenever a process requests a resource that is currently available,

the system must decide whether the resource can be allocated
immediately or whether the process must wait.

! The request is granted only if the allocation leaves the system in a
safe state.

7.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safe, Unsafe, Deadlock State

7.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Avoidance Algorithms

! Two algorithms:
! Single instance of a resource type

4 Use a resource-allocation graph algorithm.

! Multiple instances of a resource type
4 Use the banker’s algorithm

7.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph Scheme

! Single resource instance.

! Claim edge Pi Rj indicated that process Pi may request resource Rj;
represented by a dashed line

§ Claim edge converts to request edge when a process requests a
resource

§ Request edge converted to an assignment edge when the resource is
allocated to the process

§ When a resource is released by a process, assignment edge
reconverts to a claim edge again.

! Resources must be claimed a priori in the system

7.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph

7.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph Algorithm

! Suppose that process Pi requests a resource Rj

! The request can be granted only if converting the request edge to an
assignment edge does not result in the formation of a cycle in the
resource allocation graph

7.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Unsafe State In Resource-Allocation Graph

Although R2 is currently free, we cannot allocate it to P2, since
this action will create a cycle in the graph

7.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Banker’s Algorithm

! Multiple resource instances

! Each process must a priori claim maximum use

! When a process requests a resource:
! When a process requests a set of resources, the system must determine whether

the allocation of these resources will leave the system in a safe state. If it will, the
resources are allocated.

! otherwise, the process must wait until some other process releases enough
resources.

! When a process gets all its resources it must return them in a finite amount of
time

! This algorithms is composed of two sub algorithms:
! Safety algorithm (finding out whether or not a system is in a safe state)
! Resource-Request Algorithm (determining whether requests can be safely granted).

7.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Data Structures for the Banker’s Algorithm

! Let n = number of processes, and m = number of resources types.

! Several data structures must be maintained to implement the banker’s
algorithm

! Available: Vector of length m. If available [j] = k, there are k instances
of resource type Rj available

! Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most
k instances of resource type Rj

! Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj

! Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances
of Rj to complete its task (indicates the remaining resource need of each
process).

Need [i,j] = Max[i,j] – Allocation [i,j]

7.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Data Structures for the Banker’s Algorithm

! For simplicity:

! Allocationi à a vector that specifies the resources currently allocated
to process Pi

! Needi à a vector that specifies the additional resources that process Pi
may still request to complete its task.

7.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Banker’s Algorithm – Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work

If no such i exists, go to step 4
3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

7.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Banker’s Algorithm – Resource-Request Algorithm for
Process Pi

Requesti = request vector for process Pi
If Requesti [j] = k then process Pi wants k instances of resource type Rj

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait,
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

! If safe à the resources are allocated to Pi
! If unsafe à Pi must wait, and the old resource-allocation state

is restored

7.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Banker’s Algorithm

! 5 processes P0 through P4;
3 resource types:

A (10 instances), B (5 instances), and C (7 instances)
! Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

7.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example (Cont.)
! The content of the matrix Need is defined to be Max – Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

! The system is in a safe state since the sequence < P1, P3, P4, P0, P2>
satisfies safety criteria

7.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution

7.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Cont.

7.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example: P1 Request (1,0,2)
! Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) à true)

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

! Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement

! Can request for (3,3,0) by P4 be granted?

! Can request for (0,2,0) by P0 be granted?

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 7

