
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

6.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

! Basic Concepts
! Scheduling Criteria
! Scheduling Algorithms

! Sections from the textbook: 6.1, 6.2, and 6.3

6.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

! To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems

! To describe various CPU-scheduling algorithms
! To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a

particular system

6.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Concepts

! Maximum CPU utilization
obtained with multiprogramming

! Process execution consists of
cycles of CPU execution and I/O
wait

! CPU burst followed by I/O burst,
and so on.

! Process execution begins and
ends with CPU burst.

! CPU burst distribution is of main
concern

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

6.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Histogram of CPU-burst Times

Short CPU-bursts

Long CPU-bursts

6.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Scheduler

! When the CPU is idle, Short-term scheduler (CPU scheduler) selects
from the processes in ready queue (memory), and allocates the CPU to
one of them
! Queue may be ordered in various ways (not only “FIFO”).

! CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state (I/O request or wait())
2. Switches from running to ready state (interrupts)
3. Switches from waiting to ready
4. Terminates

! Scheduling under 1 and 4 is nonpreemptive (cooperative)
! All other scheduling is preemptive, which can result in race conditions:

! Consider access to shared data
! Consider preemption while in kernel mode
! Consider interrupts occurring during crucial OS activities

6.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dispatcher

! Another component involved in the CPU-scheduling function is the
dispatcher.

! Dispatcher module gives control of the CPU to the process selected by
the short-term scheduler; this involves:
! switching context
! switching to user mode
! jumping to the proper location in the user program to restart that

program
! The dispatcher should be fast!
! Dispatch latency
– time it takes for the dispatcher to stop one process
and start another running

6.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Criteria

! Criteria have been suggested for comparing CPU-scheduling algorithms.
! CPU utilization – keep the CPU as busy as possible
! Throughput – # of processes that complete their execution per time unit

! Turnaround time – amount of time to execute a particular process, from
submission to completion (TAT=CT-AT)

! Waiting time – amount of time a process spends waiting in the ready
queue (WT=CT-AT-BT)è (WT=TAT-BT)

! Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output.

6.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

! It is better to:
! Maximizing CPU utilization
! Maximizing throughput
! Minimizing turnaround time
! Minimizing waiting time
! Minimizing response time

6.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Algorithms

! CPU scheduling algorithm decides on which of the processes in the
ready queue is to be allocated the CPU.

! First- Come, First-Served (FCFS) Scheduling.
! Shortest-Job-First (SJF) Scheduling.
! Priority Scheduling.
! Round Robin (RR).
! Multilevel Queue.

6.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

! Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

! Waiting time for P1 = 0; P2 = 24; P3 = 27 milliseconds
! Average waiting time: (0 + 24 + 27)/3 = 17 milliseconds

P P P1 2 3

0 24 3027

- The simplest, the process that requests the CPU first is allocated the CPU first.
- With the help of FIFO queue.
- nonpreemptive

6.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

! Turnaround Time for P1 = 24; P2 = 27; P3 = 30
! Average Turnaround Time : (24 + 27 + 30)/3 = 30

P P P1 2 3

0 24 3027

6.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

Process Arrive Time Burst Time
P1 0 24
P2 1 3
P3 2 3

!

Waiting time?

! Turnaround Time for P1 = 24-0; P2 = 27-1; P3 = 30-2
! Average Turnaround Time: (24 + 26 + 28)/3 = 26

P P P1 2 3

0 24 3027

6.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order:

P2 , P3 , P1

! The Gantt chart for the schedule is:

! Waiting time for P1 = 6; P2 = 0; P3 = 3
! Average waiting time: (6 + 0 + 3)/3 = 3
! Much better than previous case

⌦ Convoy effect - short process behind long processè Lower CPU
utilization
! Consider one CPU-bound and many I/O-bound processes

⌦ Troublesome for time-sharing systems.

P1
0 3 6 30

P2 P3

6.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shortest-Job-First (SJF) Scheduling

! Associate with each process the length of its next CPU burst
! Use these lengths to schedule the process with the shortest

time
! SJF is optimal – gives minimum average waiting time for a given

set of processes
⌦ The difficulty is knowing the length of the next CPU request

6.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of SJF

ProcessArrival Time Burst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

! SJF scheduling chart

! Average waiting time = (3 + 16 + 9 + 0) / 4 = 7
! Turnaround Time for P1 = 9 ; P2 = 24; P3 = 16; P4 = 3
! Average Turnaround Time: (9+24+16+3)/4 = 13
! What is the average waiting time using FCFS scheduling ?

P3
0 3 24

P4 P1
169

P2

6.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Determining Length of Next CPU Burst

! Can only estimate the length – should be similar to the previous one
! Then pick process with shortest predicted next CPU burst

! Can be done by using the length of previous CPU bursts, using
exponential averaging

! tn contains our most recent information, while stores the past history.
! Commonly, α set to ½

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

££
=

=

+

aa
t 1n

th
n nt

6.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Prediction of the Length of the Next CPU Burst

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12

Prove that diagram !!!

6.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Exponential Averaging

! a =0
! tn+1 = tn

! Recent history does not count
! a =1

! tn+1 = a tn
! Only the actual last CPU burst counts

! If we expand the formula, we get:
tn+1 = a tn+(1 - a)a tn -1 + …

+(1 - a)ja tn -j + …
+(1 - a)n +1 t0

! Since both a and (1 - a) are less than or equal to 1, each successive term has
less weight than its predecessor

6.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Exponential Averaging
! Problem:
Calculate the predicted burst time using exponential averaging for the fifth process
if the predicted burst time for the first process is 10 units and actual burst time of the
first four processes is 4, 8, 6 and 7 units respectively. Given α = 0.5.

https://www.gatevidyalay.com/predicting-burst-time-sjf-scheduling/

! Solution:
! Predicted Burst Time for 2nd Process-
= α x Actual burst time of 1st process + (1-α) x
Predicted burst time for 1st process
= 0.5 x 4 + 0.5 x 10 = 2 + 5 = 7 units

! Predicted Burst Time for 3rd Process-
= α x Actual burst time of 2nd process + (1-α) x
Predicted burst time for 2nd process
= 0.5 x 8 + 0.5 x 7 = 4 + 3.5 = 7.5 units

! Predicted Burst Time for 4th Process-
= α x Actual burst time of 3rd process + (1-α) x
Predicted burst time for 3rd process
= 0.5 x 6 + 0.5 x 7.5 = 3 + 3.75 = 6.75 units

! Predicted Burst Time for 5th Process-
= α x Actual burst time of 4th process + (1-α) x
Predicted burst time for 4th process
= 0.5 x 7 + 0.5 x 6.75 = 3.5 + 3.375 = 6.875 units

https://www.gatevidyalay.com/predicting-burst-time-sjf-scheduling/

6.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shortest-remaining-time-first
! Now we add the concepts of varying arrival times and preemption to the

analysis
! SJF can be preemptive or nonpreemptive.
! The next CPU burst of the newly arrived process may be shorter than what

is left of the currently executing process.
" A preemptive SJF algorithm will preempt the currently executing

process,.
" a nonpreemptive SJF algorithm will allow the currently running process

to finish its CPU burst.

! Preemptive SJF è shortest-remaining-time-first

6.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first
ProcessAarri Arrival TimeT Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

! Preemptive SJF Gantt Chart

! Waiting time(WT)= total waiting time – # of milliseconds process executed – arrival time
Ø WT for P1= (10-1-0)= 9 ms
Ø WT for P2=(1-0-1)= 0 ms
Ø WT for P3=(17-0-2)= 15 ms
Ø WT for P4=(5-0-3)= 2 ms

! Average waiting time = (9+0+15+2)/4 = 26/4 = 6.5 ms
! Turnaround Time for P1 = 17-0 ; P2 = 5-1; P3 = 26-2; P4 = 10-3
! Average Turnaround Time: (17+4+24+7)/4

P4
0 1 26

P1 P2
10

P3P1
5 17

6.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Scheduling
! A priority number (integer) is associated with each process

! The CPU is allocated to the process with the highest priority
(smallest integer º highest priority)

! Processes with Equal-priority are scheduled in FCFS.
! When a process arrives at the ready queue, its priority is compared with the

priority of the currently running process.
! Preemptive, preempts the CPU if the priority of the newly arrived process is higher

! Nonpreemptive, puts the new process at the head of the ready queue.

! SJF is a special case of priority scheduling where priority is the inverse of
predicted next CPU burst time (i.e., the larger the CPU burst, the lower the priority,
and vice versa).

⌦ Problem º Starvation (indefinite blocking) – low priority processes may never
execute

! Solution º Aging – as time progresses increase the priority of the process

6.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Priority Scheduling

ProcessA arri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

! Priority scheduling Gantt Chart

! Average waiting time = (6+0+16+18+1)/5= 8.2 ms
! What is the average waiting time using FCFS and SJF?

WT for P1=6 ms
WT for P2=0 ms
WT for P3=16 ms
WT for P4=18 ms
WT for P5=1 ms

6.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Round Robin (RR)
! Designed for time-sharing systems.
! It is similar to FCFS scheduling, but preemption is added to enable the system

to switch between processes.
! Each process gets a small unit of CPU time (time quantum q), usually 10-100

milliseconds.
" After this time has elapsed, the process is preempted and added to the end of the

ready queue.
" If there are n processes in the ready queue and the time quantum is q, then each

process gets 1/n of the CPU time in chunks of at most q time units at once. No
process waits more than (n-1)q time units.

! Timer interrupts every quantum to schedule next process
" The CPU scheduler picks the first process from the ready queue, sets a timer to

interrupt after 1 time quantum, and dispatches the process.

! Performance
! q large Þ FCFS
! q small Þ more context switches, overhead is too high

6.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Round Robin (RR)

! New processes are added to the tail of the ready queue.
headtail

First In - First Out

One of two things will then happen

The process has a CPU burst of less than 1 time
quantum

The process has a CPU burst longer than 1
time quantum

• process will release the CPU
voluntarily.

• The scheduler will then proceed to the
next process in the ready queue

• the timer will go off and will cause an
interrupt to the operating system

• A context switch will be executed, and
the process will be put at the tail of
the ready queue.

• The CPU scheduler will then select the
next process in the ready queue.

6.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

! The Gantt chart is:

! Average turnaround time= (30+ 7+ 10)/3= 15.67 msec
! Typically, higher average turnaround time than SJF, but better

response
! q should be large compared to context switch time
! q usually 10ms to 100ms, context switch < 10 microseconds (μs)

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

6.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

! The Gantt chart is:

Turnaround time= Completion time - Arrival time
Waiting time= Turnaround time – Burst time

Average Waiting time=(6+4+7)/3
=17/3= 5.66 ms

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Process Completion
time

Turnaround
time

Waiting
time

P1 30 30-0=30 30-24=6

P2 7 7-0=7 7-3=4

P3 10 10-0=10 10-3=7

6.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

6.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter
than q

For Q=1
Average turn around time =
11 msec (prove)

For Q=5
Average turn around time =
12.25 msec (prove)

and so on.

• Note that the average turnaround time of a set of processes does not
necessarily improve as the time-quantum size increases.

• In general, the average turnaround time can be improved if most
processes finish their next CPU burst in a single time quantum

6.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Preemptive/ Non preemptive

Preemptive/ nonpreemptiveScheduling
nonpreemptiveFCFS
may be either preemptive/ nonpreemptiveSJF
may be either preemptive/ nonpreemptivePriority
preemptiveRR

6.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue

! Ready queue is partitioned into separate queues based on their properties, for
example:
! foreground (interactive),
! background (batch)
These two have different response-time requirements è different scheduling needs. Also, foreground
processes may have higher priority over background processes.

! Process permanently in a given queue
! Each queue has its own scheduling algorithm:

! foreground – RR
! background – FCFS

! Scheduling must be done between the queues:
! Fixed priority scheduling; (i.e., serve all from foreground then from background)

èPossibility of starvation.
! Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes; i.e., 80% to foreground in RR
20% to background in FCFS

6.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

6.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Feedback Queue
! Multilevel feedback queue scheduling algorithm allows a process to move

between queues.
! The idea is to separate processes according to the characteristics of their

CPU bursts.
! If a process uses too much CPU time, it will be moved to a lower-priority

queue àI/O-bound and interactive processes in the higher-priority queues.

! A process that waits too long in a lower-priority queue may be moved to a
higher-priority queue à this form of aging prevents starvation.

! Multilevel-feedback-queue scheduler defined by the following parameters:
! number of queues
! scheduling algorithms for each queue
! method used to determine when to upgrade a process
! method used to determine when to demote a process
! method used to determine which queue a process will enter when that

process needs service

6.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

! Three queues:
! Q0 – RR with time quantum 8 ms
! Q1 – RR time quantum 16 ms
! Q2 – FCFS

! Scheduling
! A new job enters queue Q0

4 When it gains CPU, job receives 8 ms
4 If it does not finish in 8 ms, job is

moved to queue Q1

! At Q1 job is again served RR and receives
16 additional ms
4 If it still does not complete, it is

preempted and moved to queue Q2

Q0

Q1

Q2

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 6

