
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 8: Main Memory

8.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 8: Memory Management

• Background
• Swapping
• Contiguous Memory Allocation
• Paging

8.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

• To provide a detailed description of various ways of organizing
memory hardware

• To discuss various memory-management techniques, including
paging.

8.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

• The main purpose of a computer system is to execute programs.
• Program must be brought (from disk) into memory and placed within a

process for it to be executed.
From secondary memory (hard disk) Main memory (RAM)

• To improve both the utilization of the CPU and the speed of its response to
users à a system must keep several processes in memory.

Main memory Management

8.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

• Memory consists of a large array of bytes, each with its own address.

• Main memory and registers(built into the processor itself) are only storage CPU can
access directly

• Memory unit only sees a stream of addresses + read requests, or address +
data and write requests.

• Registers that are built into the CPU are generally accessible within one cycle
of the CPU clock

• Main memory can take many cycles, causing the processor to stall

Remedy è Cache sits between main memory and CPU registers

• Protection of memory required to ensure correct operation and controlled
access.

8.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Base and Limit Registers

• Each process has a separate memory space.
• To separate memory spaces, we need the ability to determine the range of

legal addresses that the process may access.
• A pair of base and limit registers define the logical address space

• The base register holds the smallest legal physical memory address.
• the limit register specifies the size of the range.

For example, if the base register holds 300040 and
the limit register is 120900, then the program can
legally access all addresses from 300040 through
420940 (inclusive).

8.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hardware Address Protection

base

memory
trap to operating system

monitor—addressing error

address yesyes

nono

CPU

base ! limit

≥ <

• This scheme prevents a user program from (accidentally or deliberately)
modifying the code or data structures of either the operating system or
other users.

• CPU must check every memory access generated in user mode to be
sure it is between base and limit for that user

8.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Address Binding

• A program resides on a disk as a binary executable file
• Programs on disk, ready to be brought into memory to execute form an

input queue
• Without support, must be loaded into address 0000

• Inconvenient to have first user process physical address always at 0000
• How can it not be?

• Further, addresses represented in different ways at different stages of a
program’s life
• Source code addresses usually symbolic
• Compiled code addresses bind to relocatable addresses

• i.e. “14 bytes from beginning of this module”
• Linker or loader will bind relocatable addresses to absolute addresses

• i.e. 74014
• Each binding maps one address space to another

8.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multistep Processing of a User Program

8.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Binding of Instructions and Data to Memory

• Address binding of instructions and data to memory addresses can happen at
three different stages

• Compile time: If memory location known a priori, absolute code can be
generated; must recompile code if starting location changes

• Load time: Must generate relocatable code if memory location is not
known at compile time

• Execution time: Binding delayed until run time if the process can be
moved during its execution from one memory segment to another
• Need hardware support for address mappings (e.g., base and limit

registers)

8.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Logical vs. Physical Address Space

! The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management

• Logical address – generated by the CPU; also referred to as virtual address
• Physical address – address seen by the memory unit

! Logical and physical addresses are the same in compile-time and load-time
address-binding schemes; logical (virtual) and physical addresses differ in
execution-time address-binding scheme

! Logical address space is the set of all logical addresses generated by a program

Physical address space is the set of all physical addresses generated by a
program

! The run time mapping from virtual to physical address is done by a hardware
device called the Memory-Management Unit (MMU)

8.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory-Management Unit (MMU)

• Hardware device that at run time maps virtual to physical address

• To start, consider simple scheme where the value in the relocation register
is added to every address generated by a user process at the time it is sent
to memory
• Base register now called relocation register
• MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses; it never sees the real
physical addresses
• Execution-time binding occurs when reference is made to location in

memory
• Logical address bound to physical addresses

8.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dynamic relocation using a relocation register

8.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dynamic Loading

§ A program and all data of a process to be in physical memory for the process
to execute.
èthe size of a process has thus been limited to the size of physical memory

§ With dynamic loading:
§ Routine is not loaded until it is called

§ Better memory-space utilization; unused routine is never loaded

§ All routines kept on disk in relocatable load format

§ Useful when large amounts of code are needed to handle infrequently
occurring cases

§ No special support from the operating system is required
• Implemented through program design
• OS can help by providing libraries to implement dynamic loading

8.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dynamic Linking

• Dynamically linked libraries are system libraries that are linked to user
programs when the programs are run

• Static linking – system libraries and program code combined by the loader
into the binary program image è waste disk space and main memory

• Dynamic linking –linking postponed until execution time
• Small piece of code, stub, used to locate the appropriate memory-resident

library routine or how to load the library if the routine is not already present.

• Stub replaces itself with the address of the routine, and executes the
routine

• Operating system checks if routine is in processes’ memory address
• If not in address space, add to address space

• Under this scheme, all processes that use a language library execute only
one copy of the library code.

• Dynamic linking is particularly useful for libraries è shared libraries
• Consider applicability to patching system libraries

• Versioning may be needed

8.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Swapping

• A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution
• Total physical memory space of processes can exceed physical

memory

• Backing store – fast disk large enough to accommodate copies of all
memory images for all users; must provide direct access to these
memory images

• Roll out, roll in – swapping variant used for priority-based scheduling
algorithms; lower-priority process is swapped out so higher-priority
process can be loaded and executed

• Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped

• System maintains a ready queue of ready-to-run processes which have
memory images on disk

8.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schematic View of Swapping

8.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Swapping (Cont.)
• Does the swapped out process need to swap back in to same

physical addresses?
• Depends on address binding method

• Swapping is constrained by other factors as well.
• If we want to swap a process, we must be sure that it is

completely idle
• A process may be waiting for an I/O operation èthis process

cannot be swapped.

• Modified versions of swapping are found on many systems (i.e.,
UNIX, Linux, and Windows)
• Swapping normally disabled
• Started if more than threshold amount of memory allocated
+ Disabled again once memory demand reduced below threshold

8.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch Time including Swapping

• If next processes to be put on CPU is not in memory, need to swap
out a process and swap in target process

• Context switch time can then be very high
• 100MB process swapping to hard disk with transfer rate of 50MB/sec

• Swap out time of 2000 ms
• Plus swap in of same sized process
• Total context switch swapping component time of 4000ms (4

seconds)
• Can reduce if reduce size of memory swapped – by knowing how

much memory really being used
• System calls to inform OS of memory use via

request_memory() and release_memory()

8.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Swapping on Mobile Systems
• Not typically supported

• Flash-memory based
• Small amount of space
• Limited number of write cycles
• Poor throughput between flash memory and CPU on mobile

platform
• Instead use other methods to free memory if low

• iOS asks apps to voluntarily relinquish allocated memory
• Read-only data thrown out and reloaded from flash if needed
• Failure to free can result in termination

• Android terminates apps if low free memory, but first writes
application state to the flash memory for fast restart

• Both OSes support paging (memory management abilities)

8.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Contiguous Allocation

• Main memory must support both OS and user processes

• Main memory is a limited resourceà must be allocated efficiently

• Contiguous allocation is one early method

• Main memory usually into two partitions:
• Resident operating system, usually held in low memory with interrupt

vector
• User processes then held in high memory

4 each process is contained in a single section of memory that is
contiguous to the section containing the next process.

8.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Contiguous Allocation

8.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Contiguous Allocation (Cont.)

• Relocation registers used to protect user processes from each other, and from
changing operating-system code and data

• Base register contains value of smallest physical address
• Limit register contains range of logical addresses – each logical address

must be less than the limit register
• MMU maps logical address dynamically

• The relocation-register scheme provides a way to allow the operating
system’s size to change dynamically.

• For example, the operating system contains code and buffer space for device drivers. If a device
driver (or other operating-system service) is not commonly used, we do not want to keep the
code and data in memory,

• Such code is sometimes called transient operating-system code (it comes
and goes as needed)

8.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hardware Support for Relocation and Limit Registers

8.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiple-partition allocation
• Multiple-partition allocation

• Degree of multiprogramming limited by number of partitions
• Variable-partition sizes for efficiency (sized to a given process’ needs)
• Hole – block of available memory; holes of various size are scattered

throughout memory
• When a process arrives, it is allocated memory from a hole large enough to

accommodate it
• Process exiting frees its partition, adjacent free partitions combined
• Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

8.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big enough
• Searching can start either at the beginning of the set of holes or at the location where the

previous first-fit search ended.
• We can stop searching as soon as we find a free hole that is large enough.

• Best-fit: Allocate the smallest hole that is big enough
• We must search the entire list, unless the list is ordered by size.
• Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole;
• We must search the entire list, unless it is sorted by size.
• Produces the largest leftover hole

How to satisfy a request of size n from a list of free partitions/holes
in main memory?

First-fit and best-fit better than worst-fit in terms of decreasing time and storage
utilization

8.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiple-partition allocation: Examples

8.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiple-partition allocation: Examples

8.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fragmentation

• As processes are loaded and removed from memory, the free memory space
is broken into little piecesè fragmentation

! Types of Fragmentation:
• External Fragmentation – total memory space exists to satisfy a request,

but the available spaces are not contiguous (storage is fragmented into a large
number of small holes)

• Internal Fragmentation – allocated memory may be slightly larger than a
process’s requested memory (unused memory that is internal to a partition)

• Solution: Best fit approach.

• First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to
fragmentation
• 1/3 of memeory may be unusable -> 50-percent rule

8.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fragmentation (Cont.)

• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory together in one

large block
• Compaction is possible only if relocation is dynamic, and is done

at execution time
• I/O problem

• Latch job in memory while it is involved in I/O
• Do I/O only into OS buffers

• Now consider that backing store has same fragmentation problems

8.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging

! Paging is a memory-management scheme that permits the physical
address space of a process to be non-contiguous.

• Physical address space of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available
• Avoids external fragmentation
• Avoids problem of varying sized memory chunks

• Divide physical memory into fixed-sized blocks called frames
• Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages
• Keep track of all free frames
• To run a program of size N pages, need to find N free frames and load

program
• Set up a page table to translate logical to physical addresses
• Backing store likewise split into pages
• Still have Internal fragmentation

8.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging

8.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging

8.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Address Translation Scheme

• Address generated by CPU is divided into:
• Page number (p) – used as an index into a page table which

contains base address of each page in physical memory
• Page offset (d) – combined with base address to define the physical

memory address that is sent to the memory unit (the displacement
within the page)

• For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

8.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Hardware

8.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Model of Logical and Physical Memory

8.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

8.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

Logical address x maps to
physical address y

X= ((Frame X Page size)+offset)

8.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging (Cont.)

• With paging scheme, we have no external fragmentation, but we may have
some internal fragmentation

• Calculating internal fragmentation
• Page size = 2,048 bytes
• Process size = 72,766 bytes
• 35 pages + 1,086 bytes
• Internal fragmentation of 2,048 - 1,086 = 962 bytes
• Worst case fragmentation = 1 page + 1 byte è n+1 frames
• On average fragmentation = 1 / 2 frame size
• So small frame sizes desirable?

But each page table entry takes memory to track (overhead is involved in each
page-table entry, and this overhead is reduced as the size of the pages increases)

• Page sizes growing over time (4 KB and 8 KB in size)
• Solaris supports two page sizes – 8 KB and 4 MB

• Process view and physical memory now very different
• By implementation process can only access its own memory

8.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Free Frames

Before allocation After allocation

8.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of Page Table

• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the page
table

• In this scheme every data/instruction access requires two
memory accesses
• One for the page table and one for the data / instruction

• The two-memory access problem can be solved by the use of
a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)

8.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of Page Table (Cont.)

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry –
uniquely identifies each process to provide address-space protection for
that process
• Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)
• If the page number is found, its frame number is available and is used to

access memory à TLB Hit
• If the page number is not found, a memory reference to the page table must

be made à TLB Miss

• On a TLB miss, value is loaded into the TLB for faster access next time
• Replacement policies must be considered (e.g., replacing the least used entries)
• Some entries can be wired down (meaning that they cannot be removed from the

TLB) for permanent fast access

8.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Associative Memory

• Associative memory – parallel search

• Address translation (p, d)
• If p is in associative register, get frame # out
• Otherwise get frame # from page table in memory

Page # Frame #

8.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Hardware With TLB

8.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Hardware With TLBPaging Hardware With TLB

8.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Effective Access Time

For example, an 80-percent hit ratio means that we find the
desired page number in the TLB 80 percent of the time.

8.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Effective Access Time

Effective Access Time [EAT]=
[(Hit)(TLB access time + memory access time)
+ (1-Hit)(TLB access + PT access + memory access)]

8.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory Protection

• Memory protection implemented by associating protection bit with each frame
to indicate if read-only or read-write access is allowed
• Can also add more bits to indicate page execute-only, and so on

• Valid-invalid bit attached to each entry in the page table:
• “valid” indicates that the associated page is in the process’ logical

address space, and is thus a legal page
• “invalid” indicates that the page is not in the process’ logical address

space
• Or use page-table length register (PTLR) to indicate the size of the page table.

This value is checked against every logical address to verify that the address is in the valid
range for the process.

• Any violations result in a trap to the kernel

8.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Valid (v) or Invalid (i) Bit In A Page Table

8.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shared Pages

• An advantage of paging is the possibility of sharing common code. This is
important in a time-sharing environment.

• Shared code
• One copy of read-only (reentrant) code shared among processes (i.e., text

editors, compilers, window systems)
(Reentrant code is non-self-modifying code: it never changes during execution)

• Similar to multiple threads sharing the same process space
• Also useful for inter-process communication if sharing of read-write pages is

allowed

• Private code and data
• Each process keeps a separate copy of the code and data
• The pages for the private code and data can appear anywhere in the logical

address space

8.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shared Pages Example

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 8

