1-

```
One time pad (OTP)
```

a.

The key is random string of letters that has the same length of the message

b.

 $E(k,m) = m + k \mod 26$ where m is the numerical representation of each plaintext's letter as well as for the key

c.

 $D(k,c) = c - k \mod 26$ where c is the numerical representation of each ciphertext's letter as well as for the key

d.

Ciphertext:	b	S	a	S	р	р	k	k	u	0	S	р
Numerical	1	18	0	18	15	15	10	10	20	14	18	15
Ciphertext:												
OTP:	r	S	i	d	р	У	d	k	a	W	0	у
Numerical	17	18	8	3	15	24	3	10	0	22	14	24
OTP:												
Numerical	10	0	18	15	0	17	7	0	20	18	4	17
Plaintext:												
Plaintext:	k	a	S	р	a	r	h	a	u	S	e	r

2-

In Caesar cipher, the following formula is used for encryption.

 $E_n(x) = (x + n) \mod 26$, where x is the letter being encrypted

By using a shift of 3 as an example, the following is acquired.

A: $(0+3) \mod 26 = 3 \mod 26 = 3$: D

B: $(1+3) \mod 26 = 4 \mod 26 = 4$: E

- C: $(2+3) \mod 26 = 5 \mod 26 = 5$: F
- D: $(3+3) \mod 26 = 6 \mod 26 = 6$: G
- E: $(4+3) \mod 26 = 7 \mod 26 = 7$: H
- F: $(5+3) \mod 26 = 8 \mod 26 = 8$: I
- G: (6+3) mod 26 = 9 mod 26 = 9: J

3-

a	b	c	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	s	t	u	v	W	х	у	Z
u	р	i	j	g	d	t	e	h	m	v	a	X	r	k	У	q	Z	1	b	0	c	S	f	W	n

Ciphertext: h akcg izwybktzuyew

Plaintext: i love cryptography