1-
One time pad (OTP)
a.

The key is random string of letters that has the same length of the message
b.
$\mathrm{E}(\mathrm{k}, \mathrm{m})=\mathrm{m}+\mathrm{k}$ mod 26 where m is the numerical representation of each plaintext's letter as well as for the key
c.
$\mathrm{D}(\mathrm{k}, \mathrm{c})=\mathrm{c}-\mathrm{k}$ mod 26 where c is the numerical representation of each ciphertext's letter as well as for the key
d.

| Ciphertext: | b | s | a | s | p | p | k | k | u | o | s | p |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Numerical <br> Ciphertext: | 1 | 18 | 0 | 18 | 15 | 15 | 10 | 10 | 20 | 14 | 18 | 15 |
| OTP: | r | s | i | d | p | y | d | k | a | w | o | y |
| Numerical <br> OTP: | 17 | 18 | 8 | 3 | 15 | 24 | 3 | 10 | 0 | 22 | 14 | 24 |
| Numerical <br> Plaintext: | 10 | 0 | 18 | 15 | 0 | 17 | 7 | 0 | 20 | 18 | 4 | 17 |
| Plaintext: | k | a | s | p | a | r | h | a | u | s | e | r |

2-
In Caesar cipher, the following formula is used for encryption.

$$
E_{n}(x)=(x+n) \bmod 26, \text { where } x \text { is the letter being encrypted }
$$

By using a shift of 3 as an example, the following is acquired.
A: $(0+3) \bmod 26=3 \bmod 26=3: D$
B: $(1+3) \bmod 26=4 \bmod 26=4: E$
C: $(2+3) \bmod 26=5 \bmod 26=5: F$
D: $(3+3) \bmod 26=6 \bmod 26=6: G$
E: $(4+3) \bmod 26=7 \bmod 26=7: H$
F: $(5+3) \bmod 26=8 \bmod 26=8: I$
G: $(6+3) \bmod 26=9 \bmod 26=9: \mathrm{J}$

3-

| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| u | p | i | j | g | d | t | e | h | m | v | a | x | r | k | y | q | z | l | b | o | c | s | f | w | n |

Ciphertext: h akcg izwybktzuyew
Plaintext: i love cryptography

