
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 9:  Virtual Memory



9.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 9:  Virtual Memory

qBackground
qDemand Paging
qPage Replacement



9.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

q To describe the benefits of a virtual memory system
q To explain the concepts of demand paging, page-replacement 

algorithms, and allocation of page frames



9.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Introduction
q So far in the memory management and process concepts, it was seen

that the process instructions being executed must be in physical memory.

q Virtual Memory is a storage scheme where secondary memory can be
treated as if it is a part of main memory.

q Virtual Memory is a technique that allows the execution of processes
that are not completely in memory.

q Virtual memory abstracts main memory into an extremely large, uniform
array of storage,

q Thus, a computer can address more memory than the amount physically
installed on the system.

q This extra memory is actually called virtual memory and it is a section
of a secondary storage (hard disk) that's set up to emulate the
computer's RAM.



9.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

q Code needs to be in memory to execute, but entire program rarely used
q Error code, unusual routines, large data structures

q Entire program code not needed at same time
q Consider ability to execute partially-loaded program

q Program no longer constrained by limits of physical memory
q Each program takes less memory while running -> more programs run at 

the same time
q Increased CPU utilization and throughput with no increase in response 

time or turnaround time
q Less I/O needed to load or swap programs into memory -> each user 

program runs faster
q Running a program that is not entirely in memory would benefit both the 

system and the user. 



9.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background (Cont.)

q Virtual memory – separation of user logical memory from physical 
memory
☑ Only part of the program needs to be in memory for execution
☑ Logical address space can therefore be much larger than physical 

address space
☑ Allows address spaces to be shared by several processes
☑ Allows for more efficient process creation
☑ More programs running concurrently
☑ Less I/O needed to load or swap processes



9.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual Memory That is Larger Than Physical Memory



9.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background (Cont.)
q Virtual address space – logical view (virtual view) of how a process is 

stored in memory 

q Usually start at address 0, contiguous addresses until end of space
q Meanwhile, physical memory organized in page frames
q MMU must map logical to physical

q Virtual memory can be implemented via:
q Demand paging
q Demand segmentation



9.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual-address Space

q Usually designing logical address space for stack 
to start at Max logical address and grow “down” 
while heap grows “up”
q Maximizes address space use
q Unused address space between the two is 

hole
q No physical memory needed until 

heap or stack grows
q Virtual address spaces that include holes are 

known as sparse address spaces. 
q Enables sparse address spaces with holes left for 

growth, dynamically linked libraries, etc (benefits)
System libraries shared via mapping into 
virtual address space
Shared memory by mapping pages read-
write into virtual address space
Pages can be shared during fork(), 
speeding process creation



9.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shared Library Using Virtual Memory



9.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging
q Could bring entire process into memory at 

load time
q Or bring a page into memory only when it is 

needed
q Less I/O needed, no unnecessary I/O
q Less memory needed 
q Faster response
q More users

q Similar to paging system with swapping 
(diagram on right)

q Page is needed Þ reference to it
q invalid reference Þ abort
q not-in-memory Þ bring to memory

q Lazy swapper – never swaps a page into 
memory unless page will be needed
q Swapper that deals with pages is a 

pager



9.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Concepts

q With swapping, pager guesses which pages will be used before 
swapping out again

q Instead, pager brings in only those pages into memory
q How to determine that set of pages?

q Need new MMU functionality to implement demand paging
q If pages needed are already memory resident

q No difference from non demand-paging
q If page needed and not memory resident

q Need to detect and load the page into memory from storage
4 Without changing program behavior
4 Without programmer needing to change code



9.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Valid-Invalid Bit
q With each page table entry a valid–invalid bit is associated

(v Þ in-memory – memory resident, i Þ not-in-memory)
q Initially valid–invalid bit is set to i on all entries
q Example of a page table snapshot:

q During MMU address translation, if valid–invalid bit in page table 
entry is i Þ page fault



9.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Table When Some Pages Are Not in Main Memory

If tried to access a page that 
does not belong to the 
process, what will happen? 



9.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Fault

q If there is a reference to a page, first reference to that page will trap to 
operating system:

page fault
1. Operating system looks at another table to decide:

q Invalid reference Þ abort
q Just not in memory

2. Find free frame
3. Swap page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

A crucial requirement for demand paging is the ability to restart any 
instruction after a page fault. 



9.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Steps in Handling a Page Fault



9.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Fault Example



9.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Aspects of Demand Paging
q Extreme case – start process with no pages in memory

q OS sets instruction pointer to first instruction of process, non-
memory-resident -> page fault

q And for every other process pages on first access
è This scheme is Pure demand paging

q Actually, a given instruction could access multiple pages -> multiple 
page faults
q Consider fetch and decode of instruction which adds 2 numbers 

from memory and stores result back to memory
q Pain decreased because of locality of reference

q Hardware support needed for demand paging
q Page table with valid / invalid bit
q Secondary memory (swap device with swap space)
q Instruction restart



9.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Instruction Restart

q Consider an instruction that could access several different locations
q block move

q Auto increment/decrement location
q Restart the whole operation?

4 What if source and destination overlap?



9.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance of Demand Paging
! Demand paging can significantly affect the performance of a computer 

system. 
! To see why, let’s compute the effective access time (EAT) for a 

demand-paged memory. 
! For most computer systems, the memory-access time, denoted ma, 

ranges from 10 to 200 nanoseconds.
! No page faults, the effective access time = the memory access time 

(EAT=ma). 
! What would happen if page faults occur?



9.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance of Demand Paging
q Stages in Demand Paging (worse case)
1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the location of the page on the disk
5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now in memory
11. Wait for the CPU to be allocated to this process again
12. Restore the user registers, process state, and new page table, and then resume the 

interrupted instruction



9.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance of Demand Paging (Cont.)

q Three major activities
q Service the interrupt – careful coding means just several hundred instructions 

needed (may take 1 to 100 microseconds)

q Read the page – lots of time (can take close to 8 milliseconds)

q Restart the process – (may take 1 to 100 microseconds)

! Page Fault Service Time = page fault overhead + swap page out + swap page in 
q Page Fault Rate 0 £ p £ 1

q if p = 0 no page faults 
q if p = 1, every reference is a fault

q Effective Access Time (EAT)
EAT = (1 – p) x memory access + p x page fault time



9.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging Example

( EAT is directly proportional to the page-fault rate )

p < .0000025
< one page fault in every 400,000 memory accesses

nanosecond



9.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging Optimizations
q Swap space I/O faster than file system I/O even if on the same device

q Swap allocated in larger chunks, less management needed than file 
system

q Copy entire process image to swap space at process load time
q Then page in and out of swap space
q Used in older BSD Unix

q Demand page in from program binary on disk, but discard rather than paging 
out when freeing frame
q Used in Solaris and current BSD
q Still need to write to swap space

q Pages not associated with a file (like stack and heap) – anonymous
memory

q Pages modified in memory but not yet written back to the file system
q Mobile systems

q Typically don’t support swapping
q Instead, demand page from file system and reclaim read-only pages 

(such as code)



9.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Copy-on-Write

q Recall that the fork() system call creates a child process that is a duplicate of 
its parent.

q Copy-on-Write (COW) allows both parent and child processes to initially share the 
same pages in memory
q If either process modifies a shared page, only then is the page copied

q COW allows more efficient process creation as only modified pages are copied
q In general, free pages are allocated from a pool of zero-fill-on-demand pages

q Pool should always have free frames for fast demand page execution

q Several versions of UNIX uses vfork()(for virtual memory fork)  a variation on fork(), 
the parent process is suspended, and the child process uses the address space of 
the parent. 

q vfork() does not use copy-on-write è if the child process changes any pages of 
the parent’s address space, the altered pages will be visible to the parent once it 
resumes 
q Designed to have child call exec()
q Very efficient



9.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Before Process 1 Modifies Page C



9.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

After Process 1 Modifies Page C



9.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Problems of Demand Paging

What Happens if There is no Free Frame?
q Used up by process pages
q Also in-demand from the kernel, I/O buffers (buffers for I/O also consume a considerable 

amount of memory)

q How much to allocate to each process?
q If increasing the degree of multiprogrammingè over-allocating memory 

Solution:
q Page replacement – find some page in memory, but not really in use, 

page it out
q Algorithm – terminate? swap out? replace the page?
q Performance – want an algorithm which will result in minimum number 

of page faults
q Same page may be brought into memory several times



9.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Need For Page Replacement



9.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Replacement

q Prevent over-allocation of memory by modifying page-fault service routine 
to include page replacement

q Use modify (dirty) bit to reduce overhead of page transfers – only 
modified pages are written to disk

q Page replacement completes separation between logical memory and 
physical memory – large virtual memory can be provided on a smaller 
physical memory



9.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to select a 

victim frame
- Write victim frame to disk if dirty

3. Bring  the desired page into the (newly) free frame; update the page and 
frame tables

4. Continue the process by restarting the instruction that caused the trap (page 
fault)

Note that if no frames are free, potentially 2 page transfers for page fault (one out 
and one in) are required – increasing EAT



9.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Replacement



9.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page and Frame Replacement Algorithms
We must solve two major problems to implement demand paging:
1. Frame-allocation algorithm determines 

! How many frames to give each process
! Which frames to replace

2. Page-replacement algorithm
! Want lowest page-fault rate on both first access and re-access

! Evaluate algorithm by running it on a particular string of memory 
references (reference string) and computing the number of page 
faults on that string
! String is just page numbers, not full addresses
! Repeated access to the same page does not cause a page fault
! Results depend on number of frames available

! In all our examples, the reference string of referenced page 
numbers is 

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1



9.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Graph of Page Faults Versus The Number of Frames



9.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First-In-First-Out (FIFO) Algorithm
! The simplest page-replacement algorithm is (FIFO) algorithm. 
! We can create a FIFO queue to hold all pages in memory.

! We replace the page at the head of the queue. 
! When a page is brought into memory, we insert it at the tail of the 

queue. 

! Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
! 3 frames (3 pages can be in memory at a time per process)



9.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First-In-First-Out (FIFO) Algorithm
! Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
! 3 frames (3 pages can be in memory at a time per process)



9.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FIFO Illustrating Belady’s Anomaly

n
u

m
b

e
r 

o
f 

p
a

g
e

 f
a

u
lts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
Ø Adding more frames can cause more page faults!

Belady’s Anomaly   (for some page-replacement algorithms, the page-fault 
rate may increase as the number of allocated frames increases)



9.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimal Algorithm

! Replace page that will not be used for longest period of time
! 9 is optimal for the example



9.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimal Algorithm

! It has the lowest page-fault rate of all algorithms and will never suffer from 
Belady’s anomaly 

! How do you know this?
! Can’t read the future

! Used for measuring how well your algorithm performs



9.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Least Recently Used (LRU) Algorithm

! Use past knowledge rather than future
! Replace page that has not been used in the most amount of time
! Associate time of last use with each page



9.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Least Recently Used (LRU) Algorithm

! 12 faults – better than FIFO but worse than OPT
! Generally good algorithm and frequently used
! But how to implement?



9.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Algorithm (Cont.)
Two ways to implement LRU:
! Counter implementation

! Every page entry has a counter; every time page is referenced through this entry, copy 
the clock into the counter

! When a page needs to be changed, look at the counters to find smallest value
4 Search through table needed

! Stack implementation
! Keep a stack of page numbers in a doubly linked list form:
! Page referenced:

4 move it to the top
4 requires 6 pointers to be changed

! But each update more expensive
! No search for replacement

! LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly



9.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use Of A Stack to Record Most Recent Page References

2

1

0

4

7

stack
before

a

7

2

1

4

0

stack
after

b

reference string

4 7 0 7 1 0 1 2 1 2 27

a b

1



9.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing
! Thrashing occurs when virtual memory system is in a constant state 

of paging, 
! Rapidly exchanging data in memory for data on disk, to the exclusion 

of most application-level processing.
! This causes the performance of the computer to degrade or collapse 

greatly.
! The set of pages that a process is currently using is its working set .
! If the entire working set is in memory, the process will run without 

causing many faults until it moves into another execution phase (e.g., 
the next pass of the compiler). 

! If the available memory is too small to hold the entire working set, the 
process will cause many page faults and run slowly, 



9.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing

! If a process does not have “enough” pages, the page-fault rate is 
very high
! Page fault to get page
! Replace existing frame
! But quickly need replaced frame back
! This leads to:

4 Low CPU utilization
4 Operating system thinking that it needs to increase the 

degree of multiprogramming
4 Another process added to the system

! Thrashing º a process is busy swapping pages in and out



9.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing

! Since executing an instruction takes a few nanoseconds.
! and reading in a page from the disk typically takes 10 msec.
! At a rate of one or two instructions per 10 msec, it will take ages to 

finish. 
! A program causing page faults every few instructions is said to be 

thrashing



Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 9


