

COE211: Digital Logic Design

Synchronous Sequential Logic Part 2: Sequential Circuits Analysis and Design

Analysis of Sequential Circuits

- Behavior of clocked sequential circuit determined by
 - Inputs
 - Outputs
 - State of flip-flops
- Analysis process
 - Consider all combinations of
 - Inputs
 - Flip-flop states
 - Determine next state and output of circuit
- Concept of a Finite State Machine (FSM)
- Methods
 - State equations
 - State table
 - State diagram

10/22/2022

Example Circuit

- Sequential circuit
 - Input: x
 - Output: y
 - Flip-flops:
 - 2 D-type FFsA and B
- When is y=1?
 - Very difficult to answer
 - Systematic analysis necessary

State and Output Equations

Circuit view

FSM view

A(t+1) = A(t) x(t) + B(t) x(t) B(t+1) = A'(t) x(t)y(t) = (A(t) + B(t)) x'(t)

COE211: Digital Logic Design

State and Output Equations

- State equation specifies next state
 - Function of current state and inputs
- State equation for flip-flops:
 - A(t+1) = A(t) x(t) + B(t) x(t)
 - B(t+1) = A'(t) x(t)
- Output expression:
 - y(t) = (A(t) + B(t)) x'(t)
- Simplified notation:
 - A(t+1) = A x + B x
 - B(t+1) = A' x
 - y = (A+B) x'
- How to derive these Eqs?

Flip-flop Input Equations

- Similar to state equations
 - Specifies type of flip-flop used
 - In case of D-FFs
 they are the
 same as state equations.
- This circuit:
 - DA = A x + B x
 - DB = A' x
 - y = (A + B) x'

State Table

- What needs to be considered in table?
 - Inputs
 - State of flip-flops
 - Next state of flip-flops
 - Outputs
- How many entries in state table?
 - n inputs
 - m number of flip-flops
 - Total of 2^{m+n} entries
- For every entry
 - Determine flip-flop change by input and current state
 - State equation
 - Determine the output (Output equation)

	sent ate	Input		ext ate	Output
A	В	x	A	B	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Copyright ©2012 Pearson Education, publishing as Prentice Hall

COE211: Digital Logic Design

Table 5.3 Second Form of the State Table

Present State		Next State				Output		
		<i>x</i> = 0		<i>x</i> = 1		x = 0	<i>x</i> = 1	
Α	В	A	B	Α	B	у	y	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

Copyright ©2012 Pearson Education, publishing as Prentice Hall

- State transitions represented as graph
 - Vertices indicate states
 - Edges represent transitions
 - Edge annotation: "x/y" meaning input is x and output is y

	sent ate	Input		ext ate	Output		
Α	В	x	A	B	Y		
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	0	1		
0	1	1	1	1	0		
1	0	0	0	0	1		
1	0	1	1	0	0		
1	1	0	0	0	1		
1	1	1	1	0	0		

Analysis Example 2

Equation:

 $\begin{array}{l} A(t+1) = A \oplus_X \oplus_Y & (\text{state equation}) \\ D_A(t+1) = A \oplus_X \oplus_Y & (\text{flip-flop equation}) \end{array}$

Next

Present

- State table:
- State diagram:
 - Note: no outputs

Flip-flop Input Equations $J_A = B$ $K_A = Bx'$ $J_B = x'$ $K_B = A'x + Ax' = A \oplus x$

Analysis with JK FF

$$J_A = B \quad K_A = Bx'$$

$$J_B = x' \quad K_B = A'x + Ax' = A \oplus x$$

A(t+1) = BA' + (Bx')'A = A'B + AB' + Ax $B(t+1) = x'B' + (A \oplus x)'B = B'x' + ABx + A'Bx'$

Analysis with JK FF

State Equations

A(t + 1) = BA' + (Bx')'A = A'B + AB' + Ax

 $B(t + 1) = x'B' + (A \oplus x)'B = B'x' + ABx + A'Bx'$

- State table:
- State Diagram:

State Table for Sequential Circuit with JK Flip-Flops

	sent ate	Input	Next State		Flip-Flop Inputs			
Α	В	x	Α	В	JA	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Finite State Machines

- State diagrams are representations of Finite State Machines (FSM)
- Two flavors of FSMs:
 - Mealy FSM
 - Moore FSM
- Difference:
 - How output is determined
- Mealy FSM
 - Output depends on input and state
 - Output is not synchronized with clock
 - can have temporarily unstable output
- Moore FSM
 - Output depends only on state

s1

s1/

out1

in/out

in

s2

S2/

Mealy vs Moore Machine

Design of Sequential Circuits

Design of Sequential Circuits

- Derive state diagram from description
 Reduce number of states if necessary (will NOT be covered)
- 2. Assign binary values to states
- 3. Obtain binary coded state table (transition table)
- 4. Choose type of flip-flops
- 5. Derive flip-flop input equations and output equations
- 6. Draw logic diagram

Example 1: Sequence Detector

- Circuit specification:
 - Design a circuit that outputs a 1 when three consecutive 1s have been applied to input, and 0 otherwise."
- Step 1: derive state diagram
 - What should a state represent?
 - E.g., "number of 1's seen so far"
 - Moore or Mealy FSM?
 - Both possible
 - Chose Moore to simplify diagram
 - State diagram:
 - State S0: zero 1s detected
 - State S1: one 1 detected
 - State S2: two 1s detected
 - State S3: three 1s detected

Example 1: Sequence Detector

Present

State

A

0

()

0

0

1

1

Characteristic equation: Q(t+1)=DQ

B

0

0

- Step 2: state assignment
 - Two flip-flops
 - Binary state coding

Input

X

0

1

- Step 3: Binary coded state table
 - Name flip-flops A and B
- Step 4: Choose type of flip-flops
 - E.g., D flip-flop

1 0 0 0 ()1 1 1 0 () 0 ()()()()0 1 1 () 0 0 0 1 1 1 1 1

Next

State

A

0

0

B

0

1

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Output

Y

0

()

- Step 6: derive flip-flop input equations and output equation
 - Use state table

$$A(t+1) = D_A(A,B,x)$$

= $\Sigma(3,5,7)$

$$\begin{split} B(t+1) &= D_B(A,B,x) \\ &= \mathcal{L}(1,5,7) \end{split}$$

 $\begin{array}{l} y(A,B,x)=\varSigma(6,7)\\ or\ y(A,B)=\varSigma(3) \end{array}$

Table 5.11State Table for Sequence Detector

Present State		Input	Ne Sta	xt ate	Output	
A	В	x	A	В	У	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

Copyright ©2012 Pearson Education, publishing as Prentice Hall

• Step 6b: minimize equations $A(t+1) = \Sigma(3,5,7)$ $B(t+1) = \Sigma(1,5,7)$ $y(A,B) = \Sigma(3) - easy: y = AB$

Copyright ©2013 Pearson Education, publishing as Prentice Hall

COE211: Digital Logic Design

Example 1: Sequence Detector

Copyright ©2013 Pearson Education, publishing as Prentice Hall

COE211: Digital Logic Design

- Flip flops contain state information
- State can be represented in several forms:
 - State equations
 - State table
 - State diagram
- Possible to convert between these forms
- Circuits with states can take on a finite set of values
 - Finite state machine
- Two types of "machines"
 - Mealy machine
 - Moore machine