COE211: Digital Logic Design

Synchronous Sequential Logic

Part 2:
Sequential Circuits Analysis and Design

Analysis of Sequential Circuits

- Behavior of clocked sequential circuit determined by
- Inputs
- Outputs
- State of flip-flops
- Analysis process
- Consider all combinations of
- Inputs
- Flip-flop states
- Determine next state and output of circuit
- Concept of a Finite State Machine (FSM)
- Methods
- State equations
- State table
- State diagram

Example Circuit

- Sequential circuit
- Input: x
- Output: y
- Flip-flops:
- 2 D-type FFs
A and B
- When is $y=1$?
- Very difficult to answer
- Systematic analysis necessary

State and Output Equations

- Circuit view

$$
\begin{aligned}
& A(t+1)=A(t) x(t)+B(t) x(t) \\
& B(t+1)=A^{\prime}(t) x(t) \\
& y(t)=(A(t)+B(t)) x^{\prime}(t)
\end{aligned}
$$

State and Output Equations

- State equation specifies next state
- Function of current state and inputs
- State equation for flip-flops:
- $A(t+1)=A(t) x(t)+B(t) x(t)$
- $B(t+1)=A^{\prime}(t) x(t)$
- Output expression:
- $y(t)=(A(t)+B(t)) x^{\prime}(t)$
- Simplified notation:
- $A(t+1)=A x+B x$
- $B(t+1)=A^{\prime} x$
- $y=(A+B) x^{\prime}$
- How to derive these Eqs?

Flip-flop Input Equations

- Similar to state equations
- Specifies type of flip-flop used
- In case of D-FFs they are the same as state equations.
- This circuit:
- $D A=A x+B x$
- $D B=A^{\prime} x$
- $y=(A+B) x^{\prime}$

State Table

- What needs to be considered in table?
- Inputs
- State of flip-flops
- Next state of flip-flops
- Outputs
- How many entries in state table?
- n inputs
- m number of flip-flops
- Total of 2^{m+n} entries
- For every entry
- Determine flip-flop change by input and current state
- State equation
- Determine the output (Output equation)

State Table

Table 5.2
State Table for the Circuit of Fig. 5.15

Present State		Input	Next State		Output
A	B	\boldsymbol{x}	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Copyright 02012 Pearson Education, publishing as Prentice Hall

State Table

Table 5.3

Second Form of the State Table

Present State		Next State				Output	
		$x=0$		$x=1$		$x=0$	$x=1$
A	B	A	B	A	B	\boldsymbol{V}	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

State Diagram

- State transitions represented as graph
- Vertices indicate states
- Edges represent transitions
- Edge annotation: " x / y " meaning input is x and output is y

Present State		Input	Next State		Output
A	B	x	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Analysis Example 2

- Equation:
$A(t+1)=A \oplus x \oplus y \quad$ (state equation)
$D_{A}(t+1)=A \oplus x \oplus y \quad$ (flip-flop equation)
- State table:
$\left.\begin{array}{cccc}\begin{array}{c}\text { Present } \\ \text { state }\end{array} & & & \\ \text { Inputs }\end{array} \begin{array}{c}\text { Next } \\ \text { state }\end{array}\right\}$
- State diagram:
- Note: no outputs

Analysis with JK FF

- Flip-flop Input Equations

$$
\begin{aligned}
& J_{A}=B \quad K_{A}=B x^{\prime} \\
& J_{B}=x^{\prime} \quad K_{B}=A^{\prime} x+A x^{\prime}=A \oplus x
\end{aligned}
$$

Analysis with JK FF

State Equations

$$
\begin{aligned}
& A(t+1)=J A^{\prime}+K^{\prime} A \\
& B(t+1)=J B^{\prime}+K^{\prime} B
\end{aligned}
$$

$$
\begin{gathered}
J_{A}=B \quad K_{A}=B x^{\prime} \\
J_{B}=x^{\prime} \quad K_{B}=A^{\prime} x+A x^{\prime}=A \oplus x \\
A(t+1)=B A^{\prime}+\left(B x^{\prime}\right)^{\prime} A=A^{\prime} B+A B^{\prime}+A x \\
B(t+1)=x^{\prime} B^{\prime}+(A \oplus x)^{\prime} B=B^{\prime} x^{\prime}+A B x+A^{\prime} B x^{\prime}
\end{gathered}
$$

Analysis with JK FF

- State Equations

$$
\begin{aligned}
& A(t+1)=B A^{\prime}+\left(B x^{\prime}\right)^{\prime} A=A^{\prime} B+A B^{\prime}+A x \\
& B(t+1)=x^{\prime} B^{\prime}+(A \oplus x)^{\prime} B=B^{\prime} x^{\prime}+A B x+A^{\prime} B x^{\prime}
\end{aligned}
$$

- State table:
- State Diagram:

State Table for Sequential Circuit with JK Flip-Flops

Present State		Input x	Next State		Flip-Flop Inputs			
A	B		A	B	J_{A}	$\boldsymbol{K}_{\boldsymbol{A}}$	J_{B}	K_{B}
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Finite State Machines

- State diagrams are representations of Finite State Machines (FSM)
- Two flavors of FSMs:
- Mealy FSM
- Moore FSM
- Difference:
- How output is determined
- Mealy FSM
- Output depends on input and state
- Output is not synchronized with clock
- can have temporarily unstable output
- Moore FSM
- Output depends only on state

Mealy vs Moore Machine

- Mealy Machine
- Output is a function of current state and present input

- Moore Machine
- Output is a function of current state only

Design of Sequential Circuits

Design of Sequential Circuits

1. Derive state diagram from description

Reduce number of states if necessary (will NOT be covered)
2. Assign binary values to states
3. Obtain binary coded state table (transition table)
4. Choose type of flip-flops
5. Derive flip-flop input equations and output equations
6. Draw logic diagram

Example 1: Sequence Detector

- Circuit specification:
- Design a circuit that outputs a 1 when three consecutive 1 s have been applied to input, and 0 otherwise."
- Step 1: derive state diagram
- What should a state represent?
- E.g., "number of 1's seen so far"
- Moore or Mealy FSM?
- Both possible
- Chose Moore to simplify diagram
- State diagram:
- State S0: zero 1s detected
- State S1: one 1 detected
- State S2: two 1s detected
- State S3: three 1s detected

Example 1: Sequence Detector

- Step 2: state assignment
- Two flip-flops
- Binary state coding

Table 5.11
State Table for Sequence Detector

- Step 3: Binary coded	Present State		$\frac{\text { Input }}{x}$	Next State		$\begin{gathered} \text { Output } \\ \hline y \end{gathered}$
	A	B		A	B	
state table	0	0	0	0	0	0
State table	0	0	1	0	1	0
- Name flip-flops A and B	0	1	0	0	0	0
	0	1	1	1	0	0
	1	0	0	0	0	0
- Step 4: Choose type of	1	0	1	1	1	0
	1	1	0	0	0	1
flip-flops	1	1	1	1	1	1

- E.g., D flip-flop
- Characteristic equation: $\mathrm{Q}(\mathrm{t}+1)=\mathrm{DQ}$

Example 1: Sequence Detector

- Step 6: derive flip-flop input equations and output equation
- Use state table

$$
\begin{aligned}
& \begin{aligned}
A(t+1) & =D_{A}(A, B, x) \\
& =\Sigma(3,5,7)
\end{aligned} \\
& \begin{aligned}
B(t+1) & =D_{B}(A, B, x) \\
& =\Sigma(1,5,7)
\end{aligned} \\
& y(A, B, x)=\Sigma(6,7) \\
& \text { or } y(A, B)=\Sigma(3)
\end{aligned}
$$

Table 5.11
State Table for Sequence Detector

Present State		Input X	Next State		Output y
A	B		A	B	
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Example 1: Sequence Detector

- Step 6b: minimize equations

$$
\begin{aligned}
& A(t+1)=\Sigma(3,5,7) \\
& B(t+1)=\Sigma(1,5,7) \\
& y(A, B)=\Sigma(3)-\text { easy: } y=A B
\end{aligned}
$$

$D_{A}=A x+B x$

$D_{B}=A x+B^{\prime} x$

$y=A B$

Example 1: Sequence Detector

Summary

- Flip flops contain state information
- State can be represented in several forms:
- State equations
- State table
- State diagram
- Possible to convert between these forms
- Circuits with states can take on a finite set of values
- Finite state machine
- Two types of "machines"
- Mealy machine
- Moore machine

