
Introduction to Linux
Operating System

Lab 01

1

2

اللهم علمنا ما ينفعنا ،،، وانفعنا بما علمتنا ،،، وزدنا علما

Lab Objective

• To introduce some of the common Linux
commands

3

Introduction

• Linux is a clone of the Unix operating system.
• Unix was developed in 1969 by Dennis Ritchie and

Kevin Thompson at Bell Laboratories.
• Most of the Unix operating system is written in the

high-level programming language C.
• A Unix operating system consists of a kernel and a

set of common utility programs.
• The kernel is the core of the operating system,

which manages the computer hardware, controls
program executions, manages memory, etc.

• The utility programs provide user level commands,
such as those to create and edit files.

4

Why Linux?

• Free, open source.

• Ubuntu is a complete Linux operating system

• At Ubuntu's heart is the Linux kernel

• Ubuntu has a graphical user interface (GUI),
making it similar to other popular operating
systems like Windows and Mac OS

• The OS represents applications as icons or menu
choices that you can select using keyboard
commands or a mouse

5

How to Use Ubuntu?

• Requirements:

1- VirtualBox (on your Windows or Mac computer)

https://www.wikihow.com/Install-VirtualBox

2- Ubuntu disk image (ISO File)

https://ubuntu.com/download/desktop

6

https://www.wikihow.com/Install-VirtualBox
https://ubuntu.com/download/desktop

How to Use Ubuntu?

• Once you have download the VirtualBox:

1- Install the Ubuntu operating system by using
its ISO file on the Virtual Machine.

2- Open VirtualBox and click on New tab.

7

How to Use Ubuntu?

3- Identify the operating system as following:

8

How to Use Ubuntu?

4- Set the amount of RAM as following:

9

How to Use Ubuntu?

5- Create a virtual hard drive as following:

10

How to Use Ubuntu?

6- Once the virtual machine has been configured,
Start the operating system installation. Double-
click your new machine (ubuntu) in the left menu,
then browse through your computer for the
installation image file

11

How to Use Ubuntu?

7- Click Start to prompt VirtualBox to begin
reading your ISO file.

12

How to Use Ubuntu?

8- Boot up your virtual machine. Once the
operating system is installed, your virtual machine
is ready to go. Simply double-click the name of
your virtual machine in the left menu of the
VirtualBox main page to start it up.

13

How to Use Ubuntu?

You may encounter an ERROR when you try to
start up Ubuntu as this message shows:

14

How to Use Ubuntu?

To solve that problem, you have to enable
Virtualization by Restarting your computer and
booting. HOW?

• By pressing F12 or F2 while starting the
system to get the booting menu, then
choose advanced setting and enable
Virtualization or choose (VT-X / AMD V)
from Virtualization menu.

• Save the changes and exit.

15

How to Use Ubuntu?

Once there is no problem, Install Ubuntu as
described in the following link.

https://brb.nci.nih.gov/seqtools/installUbuntu.h
tml#install

16

https://brb.nci.nih.gov/seqtools/installUbuntu.html#install

Ubuntu

• This screenshot shows the Ubuntu desktop. A Web
browser opens by default. You can minimize or
close it to get it out of the way.

17

LINUX COMMANDS
OVERVIEW

18

Starting an UNIX Terminal
• To open an UNIX terminal window, click

on the "Terminal" icon in the lunch bar.

• An UNIX Terminal window will then appear
with a $ prompt, waiting for you to start
entering commands.

• Unix Terminal is like Windows DOS

19

General Linux Command Format

• A little like DOS commands on windows with
some differences

• Notes:
– Parts between [] packets are optional
– Linux is CASE SENSITIVE

$ cmd –[option(s)] [argument(s)]

The Command

One or more options to change
the behavior of the command

One or more the
directory/file to apply

the command to

20

Getting Help
• In Linux, there are on-line manuals which gives information

about most commands.
• man is used to read the manual page for a particular

command one page at a time:

• Examples,

• Use the following keys to go through the manual
• Enter → one line forward
• F → Forward one window OR
• B → Backward one window OR screen
• Q → Quits the manual

$ man cmd

$ man ls Displays the manual pages of the command ls

$ man man Displays the manual pages of the command man

21

DIRECTORY COMMANDS

22

What is a Directory?
• In Linux, all the files are grouped together in the directory

structure.
• The file-system is arranged in a hierarchical structure, like an

inverted tree.
• The top of the hierarchy is called root (written as a slash /)

• In the diagram above, the full path to the file report.doc is:
/home/knoppix/report.doc

23

Pathnames

• pwd (print working directory) is used to

prints the current directory, type:

$ pwd The full pathname will look something like this:
/home/rawan

24

Making and Removing Directories

• mkdir and rmdir are used for making and
removing directories.

– Note: A directory must not contain any files when it is
deleted, otherwise an error message is displayed.

• Examples:

$ mkdir dirname

$ rmdir dirname

$ mkdir dir1 Creates a new directory called dir1

$ rmdir dir3 Removes the directory dir3 (if it exists)

Creates a new directory with name dirname
in the current directory

Deletes the directory dirname from the
current directory

25

Changing to a Different Directory

• cd (Change Directory) is used to change the
working directory.

• Examples:

$ cd dirpath

$ cd

$ cd

$ cd dir1

$ cd dir2

$ cd ..

$ cd dir2

$ cd /home/knoppix/dir1

Change to directory dir1

Error because dir2 is not in dir1

$ cd ..

Change to parent directory dir1

Change to directory dir2

Change to directory dir1

Changes the current directory to the relative or
absolute pathname of the directory dirpath.

If no directory is given, the command changes
the current directory to the home directory.

Changes to the parent directory.

Change to home-directory

26

Directory Commands Summary

Command Meaning

pwd display the path of the current directory

mkdir dirname make a directory

rmdir dirname remove a directory

cd directory change to named directory

cd change to home-directory

cd .. change to parent directory

27

FILE COMMANDS

28

What is a file?

• A file is a collection of data.

• They are created by users using text
editors, running compilers etc.

• Examples of files:

– a document (report, essay etc.)

– the text of a program written in some high-
level programming language (like C or C++)

29

Listing files and directories

• ls (list) is used to list information about files and
directories.

• Note: The ls command has several options. The most
important is ls –l, which includes extensive
information on each file, including, the access
permissions, owner, file size, and the time when the
file was last modified.

$ ls dirpath

$ ls

$ ls -l

If the command has a directory name as
argument (i.e., dirpath), then the command lists
the files in that directory.

If no directory is given, then the command lists
the files in the current directory.

Includes extensive information on each file.

30

Moving and renaming Files

• mv is used to rename or move a file or a
directory.

• Examples:

$ mv fname newfile
The file or directory fname is renamed as
newfile. If the destination file (newfile) exists,
then the content of the file is overwritten, and
the old content of newfile is lost.

$ mv fname dirname
If the first argument is a file name and the
second argument is a directory name (dirname),
the file is moved to the specified directory.

$ mv dir2 dir5

$ mv dir5 dir1

$ mv file2 dir1

Renames dir2 to dir5

Moves dir5 to dir1

Moves file1.txt to dir1

31

Copying and Removing Files

• cp (copy) and rm (remove) are used to copy and
remove files:

• Examples:

$ cp fname newfile

$ cp fname dirname

$ rm fname

Copies the content of file fname to newfile.
If a file with name newfile exists the
content of that file is overwritten.

If the second argument is a directory, then
a copy of fname is created in directory
dirname.

Removes the file fname from the current
directory

$ cp file1 dir1

$ cd dir1

$ cp file1 file2

$ rm file1

Copy file1 to dir1

Copy to file1 to file2 overwriting its content

Removes file1
32

View and Modify Text Files

• more and cat are used to view and modify text
files.

• Examples:

$ more fname

$ cat fname

Displays the contents of file fname, one page at
a time.

Similar to the more command, but the file is
displayed without stopping at the end of each page

$ more file1

$ cat file1

Displays the contents of file1

Displays the contents of file1

33

File Commands Summary

Command Meaning

ls list files and directories in the current directory

ls dirpath List files and directories in dirpath

ls -l Includes extensive information on each file

mv file1 file2 rename file1 to file2

mv file1 dirpath move file1 to dirpath

cp file1 file2 copy file1 and call it file2

cp file1 dirpath copy file1 to dirpath

rm file remove a file

more file display a file

cat file display a file

34

Redirecting Programs Output

• > and >> are used to redirect program output

• Examples:

$ cmd > fname

$ cmd >> fname

The output of cmd is written to file fname. The
file is created if it doesn’t already exist, and the
contents is overwritten if the file exists.

Appends the output of command cmd to the end
of file fname.

$ ls > mylist

$ ls >> mylist

Writes a listing of the current directory in
file mylist

Appends a listing of the current directory to
file mylist

35

PROCESSES AND JOBS
COMMANDS

36

Foreground and Background Processes

• A process is an executing program identified
by a unique PID (process identifier).

• In Linux, each terminal window can run
multiple commands at the same time.

• It is possible to stop a command temporarily
and resume it at a later time.

• In each terminal window, one command can
be run as a foreground process and multiple
command can be run as background
processes.

37

Processes and Jobs Commands
Command Meaning

Ctrl+C Terminates the command running in the foreground

Ctrl+Z Stops (suspend) the commands in the foreground.

cmd& Executes the command cmd in the background

bg background the suspended job

jobs
Lists all background and stopped commands of the current
user, and assigns a number to each command.

fg %n

Resume suspended job number n in the foreground, and
make it the current job. The numbers are as displayed by
the jobs command.

bg %n
Resumes suspended job number n in the background, as if
it had been started with &.

ps -all Lists all current processes and their assigned ID (pid)

kill pid
Terminates the process with the specified ID: pid, where
pid is as displayed by the command ps

38

Exercise

• List all the content of the home directory then remove any
subdirectory in it

• Go to the home directory then make 3 new subdirectory
called (pics, docs, backup)

• Make a subdirectory in (pics), call it (babies)
• Rename the (backup) directory to (bup) then move it to the

(docs) directory
• Write a listing of the current directory in a file called (list_a)
• Copy the file (list_a) to the (docs) directory
• Make a copy of (list_a) and call it (list_b) then move (list_b)

to (bup) directory
• Run the command that displays the manual of the (passwd)

command in the background
• Terminate all the background process

39

??? ANY QUESTIONS ???

☺

40

Compiling java Programs
+ Compiling c++ program

in Linux

Lab 02

1

Lab Objective
• To practice writing and compiling java

programs in Linux
• Ton Learn how to Compile c++ program

2

Compiling Java
• Three things are necessary for creating

java programs:
• a text editor,
• a compiler
• a java standard library if you use Java

3

http://www.linfo.org/compiler.html

A text editor
• A text editor is all that is needed to create

the source code for a program in java or in
any other language.

• A text editor is a program for writing and
editing plain text.

• It differs from a word processor in that it
does not manage document formatting
(e.g., typefaces, fonts, margins and italics)
or other features commonly used in
desktop publishing.

4

http://www.linfo.org/source_code.html

A text editor
• java programs can be written using any of

the many text editors that are available for
Linux, such as vi, gedit, kedit or emacs.

• At least one text editor is built into every
Unix-like operating system, and most such
systems contain several.

5

http://www.linfo.org/vi/index.html

A text editor
• To see if a specific text editor exists on the

system, all that is necessary is to type its
name on the command line (i.e., the all-
text user interface) and then press the
ENTER key.

• If it exists, the editor will appear in the
existing window if it is a command line
editor, such as vi.

6

http://www.linfo.org/command_line.html
http://www.linfo.org/user_interface.html
http://www.linfo.org/window.html

A text editor
• It will open in a new window if it is a GUI

(graphical user interface) editor such as
gedit.

• For example, to see if vi is on the system
(it or some variation of it almost always
is), all that is necessary is to type the
following command and press the ENTER
key: vi

7

http://www.linfo.org/gui.html
http://www.linfo.org/command.html

A compiler
• A compiler is a specialized program that

converts source code into machine
language (also called object code or
machine code) so that it can be understood
directly by a CPU (central processing unit).

• An excellent java compiler is included in
the Java Compiler (javac), one of the most
important components of most modern
Linux distributions.

8

http://www.linfo.org/object_code.html
http://www.linfo.org/gcc.html

A compiler
• GNU is an on-going project by the Free

Software Foundation (FSF) to create a
complete, Unix-compatible, high
performance and freely distributable
computing environment.

• All that is necessary to see if the javac is
already installed and ready to use is to
type the following command and press the
ENTER key: javac

9

http://www.linfo.org/gnu.html
http://www.linfo.org/free_software.html

java library
• A library is a collection of subprograms

that any programmer can employ to
reduce the amount of complex and
repetitive source code that has to be
written for individual programs.

• Every Unix-like operating system requires
a C library.

1
0

Practice …
• Write the following program using any text editor

and save it in a file called HelloWorld.java

Note: The text file name should be the same as the
class name.

1
1

public class HelloWorld {
public static void main(String[]

args) {
System.out.println("Hello,

World");
}

}

… Practice
• The standard way to compile this program

is with the following command:

• This command compiles
HelloWorld.java into an executable
program called HelloWorld.class that
you run by typing the following at the
command line:

1
2

$ javac HelloWorld.java

$ java HelloWorld

Exercise

1) Execute the previous program
2) Write and compile another program, name it

forloop.java that only has an infinite loop like
the following:

3) Execute the loop program in the background.
4) List all current processes and their assigned ID

(PID). Write down the PID of the loop program.
5) Kill the loop program.

1
3

for(;;);

Solution:

public class forloop
{ public static void main(String[] args)

{ for (;;)
{ System.out.println("hello world"); } }}

…………………………………………….
$ javac forloop.java
$ java forloop
$ ps –all
$ kill 7351

1
4

Compiling C and C++
• C++ programs are saved with extensions

.cc whereas c program saved with
extensions .c

• If you are using g++ compiler:
g++ program.cc

To execute and see the output of program:
(Run)

./a.out
Samar Alsaleh

OS - CS242 - Spring 2009

1
5

You have to install g++ Compiler

Samar Alsaleh

OS - CS242 - Spring 2009

1
6

You have to install g++ Compiler

Samar Alsaleh

OS - CS242 - Spring 2009

1
7

• So, you must write the command to
enable installing g++ compiler.

Important commands
vPs command
• Ps stands for “Process Status”, it is used to

display the currently running processes on
Unix/Linux systems.

ps ux
vKill command
• If you want to terminate any process you

would look up the process idenifier (PID).
kill PID

Samar Alsaleh

OS - CS242 - Spring 2009

1
8

Important commands
vScript utility
• Records everything printed on your

screen. The record is recorded to the
filename.

script filename

Samar Alsaleh

OS - CS242 - Spring 2009

1
9

??? ANY QUESTIONS ???
J

2
0

Processes
Lab 03

1

Lab Objective
• To practice creating child process using
fork().

2

The fork Function
• In computing, when a process forks, it

creates a copy of itself, which is called a
"child process." The original process is
then called the "parent process“.

• The fork() function is used from a
“parent” process to create a duplicate
process, the “child”.

• The parent and the child processes can
tell each other apart by examining the
return value of the fork() system call

3

The fork Function
pid_t fork(void);

• If successful, the fork function returns
twice:

• On failure, the fork function returns once:

4

Child

returns PID of the newly-
created child process

returns 0

Parent

returns -1

Parent

Parent and Child
• A child inherits its parent's permissions,

working-directory, root-directory, open
files, etc.

• All descriptors that were open in the
parent before the call to fork are shared
with the child after the fork returns.

5

More Info
• The child process inherits the following attributes from the parent process:

• Real and effective user and group IDs
• Environment settings
• Signal handling settings
• Attached shared memory segments
• Memory mapped segments
• Process group ID
• Current working directory
• File mode creation mask
• Controlling terminal
• nice value

Samar Alsaleh

OS - CS242 - Spring 2009
6

More Info
• The child process differs from the parent process in the following ways:

• The child process has a unique process ID, which also does not match any active process
group ID.

• The child process has a different parent process ID (that is, the process ID of the process
that called fork()).

• The child process has its own copy of the parent's file descriptors Each of the child's file
descriptors refers to the same open file structures as the file descriptor of the parent.

• The child process has its own copy of the parent's open directory streams.
• The child process' process execution times (as returned by times()) are set to zero.
• Pending alarms are cleared for the child.
• All semaphore adjustment values are cleared.
• File locks set by the parent process are not inherited by the child process.
• The set of signals pending for the child process is cleared.
• Interval timers are reset.
• The new process has a single thread. If a multi-threaded process calls fork(), the new

process contains a replica of the calling thread and its entire address space, including the
states of mutexes and other resources. Consequently, to avoid errors, the child process
may only execute async-signal safe operations until such time as one of the exec()
functions is called. Fork handlers may be established using the pthread_atfork() function
to maintain application invariants across fork() calls.

Samar Alsaleh

OS - CS242 - Spring 2009
7

http://www.mkssoftware.com/docs/man3/times.3.asp
http://www.mkssoftware.com/docs/man3/execl.3.asp
http://www.mkssoftware.com/docs/man3/pthread_atfork.3.asp

Practice
Ex1:
•In the following C++ program, the main
process forks two children.
•Every child repeats adding the value 1 to
the variable “a” ten times.
•Write, compile and run the program in
Linux.

8

9

Parent Child 1

1st fork()

Parent Child 2

2nd fork()
Add 1 to a
ten times,
one each
second

Add 1 to a
ten times,
one each
second

Wait for child
termination

> 0 0

0

10

• wait() System Call

This function blocks the calling process until one of its child processes exits or
a signal is received. wait() takes the address of an integer variable and returns
the process ID of the completed process.

• The main() should be declared as int , because when you declare it as void,
it causes an error.

• clear command uses to Clear Linux Terminal.

Notes

11

#include <iostream>
#include <stdlib.h> /* exit() */
#include <unistd.h> /* fork() */
#include <sys/types.h> /* pid_t */
#include <sys/wait.h> /* wait() */
using std::cout; // it is a predefined variable which
allow to send data to the console to be printed as
text. It stands for “character output”

int main()
{

pid_t pid1, pid2, cpid;
int i, j, a, status;
a = 0;

pid1 = fork(); //fork child 1 process
if (pid1 < 0) //error occurred
{

cout<< "First Fork Failed\n";
exit(-1);

}/end if
else if (pid1 == 0) //child 1 process
{ for (i=0; i<10; i++)

{ a++;
cout<< "Child1: a =

"<<a<<"\n";
sleep(1);

}//end for
}//end else if

0a = 10

Here child 1 Add 1
to ‘a’ ten times

When fork()
returns a negative
number, an error

happened

Error

When fork()
returns 0, we are

in the child 1
process

Child 1

The main process
forks child 1

12

else //parent process
{

pid2 = fork(); //fork child 2 process
if (pid2 < 0) //error occurred
{
cout<< “Second Fork Failed\n";
exit(-1);
}//end if
else if (pid2 == 0) //child 2 process
{

for (j=0; j<10; j++)
{

a++;
cout<< "Child2: a = "

<<a<<"\n";
sleep(1);

}//end for
}//end else if
else //parent process
{

cpid = wait(&status);
cout<< "\n*****Parent is

Closing*****\n";
exit(0);

}
}//end else

}//end main

0a = 10

The parent forks
another child

Parent

Here child 2 Add 1
to ‘a’ ten times

When fork()
returns a negative
number, an error

happened

Error

When fork()
returns a positive
number, we are in
the parent process

Parent

The parent waits
for children
termination

When fork()
returns 0, we are

in the child 2
process

Child 2

13

#include <iostream>
#include <stdlib.h> /* exit() */
#include <unistd.h> /* fork() */
#include <sys/types.h> /* pid_t */
#include <sys/wait.h> /* wait() */
#include <stdio.h>
using std::cout;
int main()
{

pid_t pid1, pid2, cpid;
int i, j, a, status;
a = 0;

pid1 = fork(); //fork child 1 process
if (pid1 < 0) //error occurred
{

cout<<"First Fork Failed\n";
exit(-1);

}//end if

on Ubuntu

14

else if (pid1 == 0) //child 1 process
{

for (i=0; i<10; i++)
{

a++;
cout<< "Child1: a = "<<a<<"\n";
sleep(1);

}//end for
}//end else if
else //parent process
{

pid2 = fork(); //fork child 2 process
if (pid2 < 0) //error occurred
{
cout<< "Second Fork Failed\n";
exit(-1);
}//end if

15

else if (pid2 == 0) //child 2 process
{

for (j=0; j<10; j++)
{ a++;

cout<< "Child2: a = "
<<a<<"\n";

sleep(1);
}//end for

}//end else if
else //parent process
{

cpid = wait(&status);
cout<< "\n*****Parent is Closing*****\n";
exit(0);

}
}//end else

}//end main

16

Output

17

Output

18

Output

Samar Alsaleh

OS - CS242 - Spring 2009
19

fork() in C

Fork system call is used for creating a new process,
which is called child process, which runs concurrently
with the process that makes the fork() call (parent
process). After a new child process is created, both
processes will execute the next instruction following the
fork() system call. A child process uses the same
pc(program counter), same CPU registers, same
open files which use in the parent process.

It takes no parameters and returns an integer value. Below are
different values returned by fork().

Negative Value: creation of a child process was unsuccessful.
Zero: Returned to the newly created child process.
Positive value: Returned to parent or caller. The value contains
process ID of newly created child process.

Samar Alsaleh

OS - CS242 - Spring 2009
20

Ex2:
//predict the out put of following programe
#include <stdio.h> // For dealling with Inuput and Output
#include <sys/types.h> //This library defines different data types such as pid_t (used
for process IDs)
#include <unistd.h> // Enabling POSIX API
int main()
{

// make two process (Parent & Child) which run same
// program after this instruction
fork();

printf("Hello world!\n");
return 0;

}

Samar Alsaleh

OS - CS242 - Spring 2009
21

Ex3:
Zombie and Orphan Processes in C

Zombie Process:

A process which has finished the execution but still has
entry in the process table to report to its parent process is
known as a zombie process. A child process always first
becomes a zombie before being removed from the process
table. The parent process reads the exit status of the child
process which reaps off the child process entry from the
process table.
In the following code, the child finishes its execution using
exit() system call while the parent sleeps for 50 seconds,
hence doesn’t call wait() and the child process’s entry still
exists in the process table.

Samar Alsaleh

OS - CS242 - Spring 2009
22

// A C program to demonstrate Zombie Process.
// Child becomes Zombie as parent is sleeping
// when child process exits.
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main()
{

// Fork returns process id
// in parent process
pid_t child_pid = fork();

// Parent process
if (child_pid > 0)

sleep(50);

// Child process
else

exit(0);

return 0;
}

Samar Alsaleh

OS - CS242 - Spring 2009
23

Ex4: Orphan Process:

A process whose parent process no more exists i.e. either finished or terminated
without waiting for its child process to terminate is called an orphan process

// A C program to demonstrate Orphan Process.
// Parent process finishes execution while the
// child process is running. The child process
// becomes orphan.
#include<stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main()
{

// Create a child process
int pid = fork();

if (pid > 0)
printf("in parent process");

// Note that pid is 0 in child process
// and negative if fork() fails

else if (pid == 0)
{

sleep(30);
printf("in child process");

}

return 0;
}

Samar Alsaleh

OS - CS242 - Spring 2009
24

Ex5:
/ C++ program to demonstrate creating process (three children) using fork()
#include <unistd.h>
#include <stdio.h>
int main()
{

// Creating first child
int n1 = fork();
// Creating second child. First child

// also executes this line and creates
// grandchild.
int n2 = fork();
if (n1 > 0 && n2 > 0) {
printf("parent\n");
printf("%d %d \n", n1, n2);
printf(" my id is %d \n", getpid());

}
else if (n1 == 0 && n2 > 0)
{

printf("First child\n");
printf("%d %d \n", n1, n2);
printf("my id is %d \n", getpid());

}
else if (n1 > 0 && n2 == 0)

{ printf("Second child\n");
printf("%d %d \n", n1, n2);
printf("my id is %d \n", getpid()); }

else { printf("third child\n");// gradechild
printf("%d %d \n", n1, n2);
printf(" my id is %d \n", getpid());

}
return 0;

}

Samar Alsaleh

OS - CS242 - Spring 2009
25

parent
28808 28809
my id is 28807
First child
0 28810
my id is 28808
Second child
28808 0
my id is 28809
third child
0 0
my id is 28810

Output- 1

26

Output- 2

Process Termination
• Process executes last statement and asks

the operating system to delete it (exit)
• Parent may terminate execution of

children processes (abort)
– Child has exceeded allocated resources
– Task assigned to child is no longer required
– If parent is exiting

• Some operating systems do not allow child to
continue if its parent terminates.

27

Check Off on Ex1

1)Why the final value of a is 10 and not 20?
2)Use the command ps –all in a separate

window while the above program is running.
Write down the PID of the processes related
to the program.

3)Kill child 1 and then child 2 while the
program is running. Briefly explain what will
happen.

4)Kill the main process while the program is
running. Briefly explain what will happen.

28

Solution
1) a is 10 because each process has its own variable.

29

Solution
2) You have to write the command ps –all in a separate

window while the program is running (so you will
have 2 separates windows), the PID of the processes
will be displayed. [change sleep(5);]

30

Solution
3) To kill the child, you have to write the command --->
kill PID of child, e.g. kill 1234 (when you kill child 1 and
child 2 they will be terminated)
In the following we try to kill child1:

31Child1 ID &
Child2 ID

Parent ID

Child1 ID

Result:

Solution
4) When you kill the main process, all children

processes will be terminated. Main process (Parent)

32

Parent IDChild1 ID &
Child2 ID

Result:

33

Important
• The ps Command

Source: https://docs.oracle.com/cd/E19455-01/805-
7229/6j6q8svgp/index.html

https://docs.oracle.com/cd/E19455-01/805-7229/6j6q8svgp/index.html

34

Important
• The ps Command

Source: https://docs.oracle.com/cd/E19455-01/805-
7229/6j6q8svgp/index.html

https://docs.oracle.com/cd/E19455-01/805-7229/6j6q8svgp/index.html

??? ANY QUESTIONS ???
J

35

Threads
Lab 04

1

2

Lab Objective
• To practice using threads.

3

Threads are Fun!!

THREADS VS. PROCESSES

4

5

Global Variables
Code

Stack

Single Process

1

2

3

6

Global Variables
Code

Stack

Multiple Processes using fork()

3

Global Variables
Code

Stack

2

Global Variables
Code

Stack

1

Samar Alsaleh

OS - CS242 - Spring 2009
7

Global Variables
Code

Stack Stack Stack

Single Process with Multiple Threads

1 2 3

Thread Creation
• When a program is started, a single thread is created,

called the initial thread or main thread.
• Additional threads are created by:

• Returns 0 if OK, positive Exxx value on error
• tid à The newly-created thread ID
• attr à the new thread attributes, use NULL to get system default
• func à Pointer to a function to execute when the thread starts
• arg à Pointer to func argument (multiple arguments can be

passed by creating a structure and passing the address of the
structure)

8

int pthread_create (pthread_t * tid,
const pthread_attr_t *attr,
void *(*func) (void*),
void *arg);

1
2

3
4

1
2
3
4

Example of structre
struct arg {
Char x[10];
Int d;
Float salary;
};

9

Note: Pointer
int *e;
count<< e; //1008
Count<< *e; //5

Count<< &e; //1008
10

e

5

1008

Thread Management
• Each thread has a unique ID, a thread can

find out its ID by calling:

• A thread can be terminated by calling:

• The main thread can wait for a thread to
terminate by calling:

– Note: with pthread_join with we must
specify the tid of the thread.

11

pthread_t pthread_self();

void pthread_exit();

int pthread_join(pthread_t tid, void **status);

Very Important Note
• Use the option -pthread or -lpthread

with the compilation command to enable
the support of multithreading with the
pthread library.

• Your command line should look something
like this:

12

$ g++ lab4.CC -pthread

A simple C program to demonstrate use of pthread basic functions
Please note that the below program may compile only with C compilers

with pthread library.

Samar Alsaleh

OS - CS242 - Spring 2009
13

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> //Header file for sleep(). man 3 sleep for details.
#include <pthread.h>
// A normal C function that is executed as a thread
// when its name is specified in pthread_create()
void *myThreadFun(void *vargp)
{ sleep(1);

printf("Printing GeeksQuiz from Thread \n");
return NULL;

}
int main()
{

pthread_t thread_id;
printf("Before Thread\n");
pthread_create(&thread_id, NULL, myThreadFun, NULL);
pthread_join(thread_id, NULL);
printf("After Thread\n");
exit(0); }

Samar Alsaleh

OS - CS242 - Spring 2009
14

How to compile above program?

To compile a multithreaded program using
gcc, we need to link it with the pthreads
library. Following is the command used to
compile the program.

Output:
gfg@ubuntu:~/$ gcc multithread.c -lpthread
gfg@ubuntu:~/$./a.out
Before Thread
Printing GeeksQuiz from Thread
After Thread
gfg@ubuntu:~/$

Samar Alsaleh

OS - CS242 - Spring 2009
15

A C program to show multiple threads with global and static variables
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>

// Let us create a global variable to change it in threads
int g = 0;

// The function to be executed by all threads
void *myThreadFun(void *vargp)
{

// Store the value argument passed to this thread
int *myid = (int *)vargp;

// Let us create a static variable to observe its changes
static int s = 0;

// Change static and global variables
++s; ++g;

// Print the argument, static and global variables
printf("Thread ID: %d, Static: %d, Global: %d\n", *myid, ++s, ++g);

}

Samar Alsaleh

OS - CS242 - Spring 2009
16

int main()
{

int i;
pthread_t tid;

// Let us create three threads
for (i = 0; i < 3; i++)

pthread_create(&tid, NULL, myThreadFun, (void *)&tid);

pthread_exit(NULL);
return 0;

}
gfg@ubuntu:~/$ gcc multithread.c -lpthread
gfg@ubuntu:~/$./a.out
Thread ID: 3, Static: 2, Global: 2
Thread ID: 3, Static: 4, Global: 4
Thread ID: 3, Static: 6, Global: 6
gfg@ubuntu:~/$

References:
http://www.csc.villanova.edu/~mdamian/threads/posixthreads.html

Output:

Practice
• In the following C++ program, the main

process creates two threads of the function
doit

• The function has a loop to increment the
global variable counter by 1 for 10 times.

• Within every iteration of the loop, the
function prints out the ID of the thread that
is running and the current value of counter

• Write, compile and run the program in Linux
then answer the questions in the check-off
section.

17

Samar Alsaleh

OS - CS242 - Spring 2009
18

#include <iostream>
#include <unistd.h>// important for using sleep()
#include "pthread.h”
using std::cout;
using std::dec; //To display numbers in decimal format
using std::endl; //Output a new line
#define NLOOP 10 //Constant value
int counter = 0;
void * doit(void *);
int main()
{

pthread_t tidA, tidB;
pthread_create(&tidA, NULL, doit, NULL);
pthread_create(&tidB, NULL, doit, NULL);
pthread_join(tidA, NULL);
pthread_join(tidB, NULL);
exit(0);

}//end main
void * doit(void *vprt)
{

int i, val;
for(i = 0; i<NLOOP; i++) {

val = counter;
cout<<"Thread = "<<pthread_self();
cout<<" Counter = "<<dec<<counter<<endl;
sleep(2);
counter = val+1;}

return (NULL);
} //end doit function

Each thread
increments the
global variable
counter by 1

for 10 times

Create two
threads to run
the function

doit

Wait for both
threads to
terminate

Global variable
incremented by

the threads

19

#include <iostream>
#include <unistd.h>// important for using sleep()
#include "pthread.h"
using std::cout;
using std::dec; //To display numbers in decimal format
using std::endl; //Output a new line
#define NLOOP 10 //Constant value
int counter = 0;
void * doit(void *);
int main()
{

pthread_t tidA, tidB;
pthread_create(&tidA, NULL, doit, NULL);
pthread_create(&tidB, NULL, doit, NULL);
pthread_join(tidA, NULL);
pthread_join(tidB, NULL);
exit(0);

}//end main
void * doit(void *vprt)
{

int i, val;
for(i = 0; i<NLOOP; i++) {

val = counter;

on Ubuntu

20

cout<<"Thread = "<<pthread_self();
cout<<" Counter = "<<dec<<counter<<endl;
sleep(2);
counter = val+1;

}
return (NULL);

} //end doit function

21

on Ubuntu

22

Output

Check Off
1) Why the final value of counter is 10 and not 20?
2) Run the program again. while it’ running, use the command ps –

all in a separate window. Write down the PID of the process(es)
related to the program. Explain the difference between this program
and the program you had in the previous lab in terms of number of
PIDs.

3) modify the loop in the doit function to be as follows:

Recompile the program and run it. what is the maximum value of
counter ?

4) Briefly explain the behavior of the program based on the results you
obtain from the previous questions.

23

for(i = 0; i<NLOOP; i++) {
cout<<"Thread = "<<pthread_self();
cout<<" Counter = "<<dec<<counter<<endl;
counter++;

24

Answer for question 2:

25

Answer for question 3:

??? ANY QUESTIONS ???
J

26

Fork VS. Threads
Lab 05

1

2

Lab Objective
• To understand the deference between

thread and fork.

3

Samar Alsaleh

OS - CS242 - Spring 2009
4

Maximum number of threads that can be created within a
process in C:

• Maximum number of threads can be seen is ubuntu by using command:

cat /proc/sys/kernel/threads-max

Samar Alsaleh

OS - CS242 - Spring 2009
5

// C program to find maximum number of thread within
// a process
#include<stdio.h>
#include<pthread.h>

// This function demonstrates the work of thread
// which is of no use here, So left blank
void *thread (void *vargp){ }
int main()

{
int err = 0, count = 0;
pthread_t tid;

// on success, pthread_create returns 0 and
// on Error, it returns error number
// So, while loop is iterated until return value is 0
while (err == 0)
{

err = pthread_create (&tid, NULL, thread, NULL);
count++;

}
printf("Maximum number of thread within a Process"

" is : %d\n", count);
}

Samar Alsaleh

OS - CS242 - Spring 2009
6

Maximum number of threads that can be created within a
process in C:

Use following commond to compile and run filename is processThread.cc

• Opening file using the command:
gedit filename

Practice
• In the following C++ program, the main

process creates one thread of the function
doit and forks one child.

• Both the doit function and the child
code increment and display the global
variable counter.

• Write, compile, and run the program.

7

8

#include <iostream>
#include <stdlib.h> /* exit() */
#include <unistd.h> /* fork() */
#include <sys/types.h> /* pid_t */
#include <sys/wait.h>/* wait() */
#include "pthread.h"
using std::cout;
using std::endl; //Output a new line

int counter = 0; //Incremented by the threads and child
void * doit(void *);
int main()
{

pthread_t tid;
pid_t pid, cpid;
int status;
// Start the thread
pthread_create(&tid, NULL, doit, NULL);
//Delay between starting the thread and forking the child
sleep(2);
pid = fork(); //Fork the Child

9

if (pid < 0){
cout<<“Fork Failed\n”;
exit(-1);

}
else if (pid == 0) { // child process

sleep(2);
counter++;
cout << "Child Counter = " << counter << endl;

}
else // parent process
// parent will wait for the child to complete
cpid = wait(&status);
// wait for the thread to terminate
pthread_join(tid, NULL);
exit(0);

} // End main
void * doit(void *vptr)
{

sleep(1);
cout << "Thread First Counter = " <<

++counter << endl;
sleep(5);
cout << "Thread Second Counter = " <<

++counter << endl;
return(NULL);

}

#include <iostream>
#include <stdlib.h> /* exit() */
#include <unistd.h> /* fork() */
#include <sys/types.h> /* pid_t */
#include <sys/wait.h> /* wait() */
#include "pthread.h"
using std::cout;
using std::endl; //Output a new line

int counter = 0; //Incremented by the threads and child
void * doit(void *);
int main()
{
pthread_t tid;
pid_t pid, cpid;

int status;
// Start the thread
pthread_create(&tid, NULL, doit, NULL);

10

//Delay between starting the thread and forking the child
sleep(2);
pid = fork(); //Fork the Child

if (pid < 0){
cout<<"Fork Failed\n";
exit(-1);

}
else if (pid == 0) { // child process

sleep(2);
counter++;
cout << "Child Counter = " << counter << endl;

}
else // parent process
// parent will wait for the child to complete
cpid = wait(&status);
// wait for the thread to terminate
pthread_join(tid, NULL);
exit(0);

} // End main
11

void * doit(void *vptr)
{

sleep(1);
cout << "Thread First Counter = " <<

++counter << endl;
sleep(5);
cout << "Thread Second Counter = " <<

++counter << endl;
return(NULL);

}

12

13

Output

14

on Ubuntu

Check Off

1) What are the printed values of counter?
Explain why counter gets these values
from the child and the thread.

2) Remove the sleep(2) line that delays
between starting the thread and forking the
child. Recompile the program and run it.
What are the new printed values of
counter? Explain why counter gets these
values from the child and the thread.

15

Check Off

1)Thread 1st counter = 1
Child counter = 2
Thread 2nd counter =2

2)Thread 1st counter = 1
Child counter = 1
Thread 2nd counter =2

16

??? ANY QUESTIONS ???
J

17

