
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

6.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

Basic Concepts

Scheduling Criteria

Scheduling Algorithms

Sections from the textbook: 6.1, 6.2, and 6.3

6.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

To introduce CPU scheduling, which is the basis for multiprogrammed operating systems

To describe various CPU-scheduling algorithms

To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system

6.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Concepts

Maximum CPU utilization obtained with

multiprogramming

CPU–I/O Burst Cycle – Process execution

consists of a cycle of CPU execution and I/O

wait

CPU burst followed by I/O burst

CPU burst distribution is of main concern

6.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Histogram of CPU-burst Times

An I/O-bound program typically has many short CPU bursts.

A CPU-bound program might have a few long CPU bursts.

Short CPU-bursts

Long CPU-bursts

6.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Scheduler

Short-term scheduler selects from among the processes in ready queue, and allocates the

CPU to one of them

Queue may be ordered in various ways

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive

Consider access to shared data

Consider preemption while in kernel mode

Consider interrupts occurring during crucial OS activities

6.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dispatcher

Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

switching context

switching to user mode

jumping to the proper location in the user program to

restart that program

Dispatch latency – time it takes for the dispatcher to stop

one process and start another running

6.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Criteria

CPU utilization – keep the CPU as busy as possible

Throughput – # of processes that complete their execution per time unit

Turnaround time – amount of time to execute a particular process

TAT = CT - AT

Waiting time – amount of time a process has been waiting in the ready queue

WT = CT - AT - BT

WT = TAT - BT

Response time – amount of time it takes from when a request was submitted until the first response is

produced, not output (for time-sharing environment)

RT = (The first time to be executed by CPU) - AT

Completion Time (CT): This is the time when the process completes its execution.
Arrival Time (AT): This is the time when the process has arrived in the ready state.
Burst Time (BT): This is the time required by the process for its execution.

6.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

Max CPU utilization

Max throughput

Min turnaround time

Min waiting time

Min response time

6.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

6.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

Turnaround Time for P1 = 24; P2 = 27; P3 = 30

Average Turnaround Time : (24 + 27 + 30)/3 = 30

P P P
1 2 3

0 24 3027

6.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

Process Arrive Time Burst Time

P1 0 24

P2 1 3

P3 2 3

Turnaround Time for P1 = 24-0; P2 = 27-1; P3 = 30-2

Average Turnaround Time: (24 + 26 + 28)/3 = 26

P P P
1 2 3

0 24 3027

6.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

Much better than previous case

Convoy effect - short process behind long process

all the other processes wait for the one big process to get off the CPU.

results in lower CPU and device utilization than might be possible if the shorter processes

were allowed to go first.

consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

6.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst

Use these lengths to schedule the process with the shortest time

SJF is optimal – gives minimum average waiting time for a given set of processes

The difficulty is knowing the length of the next CPU request

Could ask the user

6.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of SJF

ProcessArrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Turnaround Time for P1 = 9 ; P2 = 24; P3 = 16; P4 = 3

Average Turnaround Time: (9+24+16+3)/4 = 13

What is the average waiting time using FCFS scheduling ?

P
3

0 3 24

P
4

P
1

169

P
2

6.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Determining Length of Next CPU Burst

Can only estimate the length – should be similar to the previous one

Then pick process with shortest predicted next CPU burst

Can be done by using the length of previous CPU bursts, using exponential averaging

Commonly, α set to ½

Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

=

=

+

 1n

th
n nt

() .1
1 nnn

t −+=
=

6.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Prediction of the Length of the Next CPU Burst

Prove that diagram !!!

6.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Exponential Averaging

 =0

n+1 = n

Recent history does not count

 =1

n+1 = tn

Only the actual last CPU burst counts

If we expand the formula, we get:

n+1 = tn+(1 -) tn -1 + …

+(1 -)j tn -j + …

+(1 -)n +1 0

Since both and (1 -) are less than or equal to 1, each successive term has less weight than
its predecessor

6.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

Now we add the concepts of varying arrival times and preemption to the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Preemptive SJF Gantt Chart

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

Turnaround Time for P1 = 17-0 ; P2 = 5-1; P3 = 26-2; P4 = 10-3

Average Turnaround Time: (17+4+24+7)/4

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

6.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority (smallest integer highest priority)

Preemptive

Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted next CPU burst time

Problem Starvation – low priority processes may never execute

Solution Aging – as time progresses increase the priority of the process

6.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Priority scheduling Gantt Chart

What is the Average waiting time = 8.2 msec

The average waiting time using FCFS and SJF?

6.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Round Robin (RR)

Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds.

After this time has elapsed, the process is preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time quantum is q, then each process gets

1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-

1)q time units.

Timer interrupts every quantum to schedule next process

Performance

q large FIFO

q small q must be large with respect to context switch, otherwise overhead is too high

6.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

The Gantt chart is:

Average turnaround time= (30+ 7+ 10)/3= 15.67 msec

Typically, higher average turnaround time than SJF, but better response

q should be large compared to context switch time

q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

6.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

6.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter
than q

For Q=1
Average turn around time = 11 msec
(prove)

For Q=5
Average turn around time = 12.25
msec (prove)

and so on.

6.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Preemptive/ Non preemptive

Preemptive/ nonpreemptiveScheduling

nonpreemptiveFCFS

may be either preemptive/ nonpreemptiveSJF

may be either preemptive/ nonpreemptivePriority

preemptiveRR

6.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue

Ready queue is partitioned into separate queues, eg:

foreground (interactive)

background (batch)

Process permanently in a given queue

Each queue has its own scheduling algorithm:

foreground – RR

background – FCFS

Scheduling must be done between the queues:

Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility

of starvation.

Time slice – each queue gets a certain amount of CPU time which it can schedule amongst

its processes; i.e., 80% to foreground in RR

20% to background in FCFS

6.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

6.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Feedback Queue

A process can move between the various queues; aging can be implemented this way

Multilevel-feedback-queue scheduler defined by the following parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process

method used to determine when to demote a process

method used to determine which queue a process will enter when that process needs

service

6.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

Three queues:

Q0 – RR with time quantum 8 milliseconds

Q1 – RR time quantum 16 milliseconds

Q2 – FCFS

Scheduling

A new job enters queue Q0 which is served FCFS

 When it gains CPU, job receives 8 milliseconds

 If it does not finish in 8 milliseconds, job is moved to

queue Q1

At Q1 job is again served FCFS and receives 16 additional

milliseconds

 If it still does not complete, it is preempted and moved

to queue Q2

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 6

