

Machine Learning with Python

Multivariate Linear Models For Regression And Classification

Dr. Aeshah Alsughayyir

Collage of Computer Science and Engineering

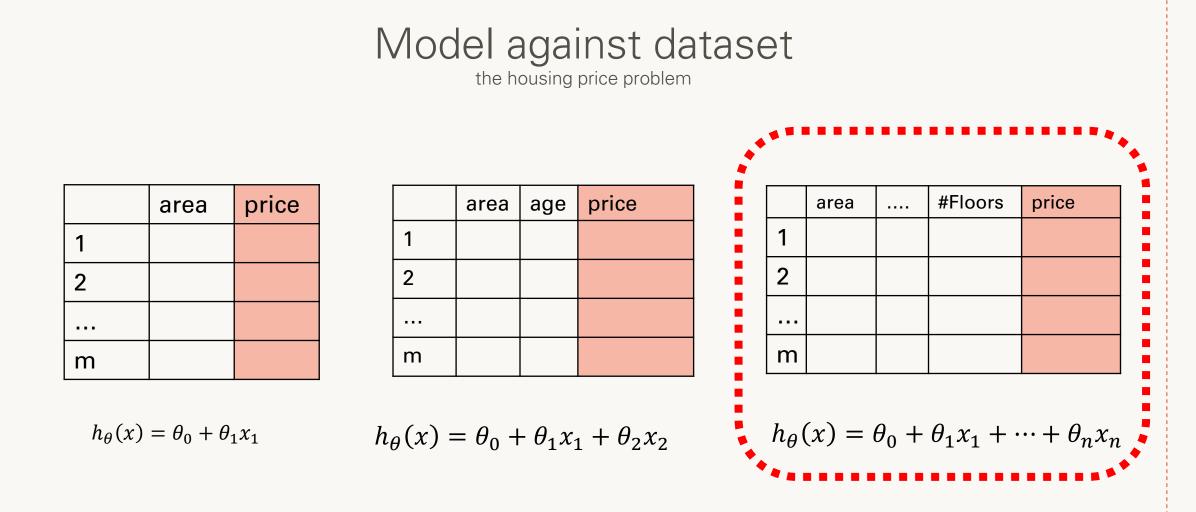
Taibah University

2021-2022

Agenda

- Multivariant linear regression
 - Feature scaling
 - Polynomial Regression
- Logistic Regression: Binary-class classification
 - Sigmoid function
 - Decision boundary
 - Cost function
- Logistic Regression: Multi-class classification
 - SoftMax function

Motivation



Predict the house's price using many features

- In original version we had
 - X = house size, use this to predict
 - \circ y = house price

If in a new scheme we have more variables (such as number of bedrooms, number floors, age of the home)
 x₁, x₂, x₃, x₄ are the four features

- x₁ size (feet squared)
- x_2 Number of bedrooms
- x₃ Number of floors
- x₄ Age of home (years)
- y is the output variable (price)

Multi-variante Multi-features Multi-variables

- *Multivariate linear regression* is the generalization of the univariate linear regression (seen earlier).
- As the name suggests, there are more than one independent variables, $x1, x2, \dots, xn$ and a dependent variable y.

Notation

- $x_1, x_2 \cdots, x_n$ denote the n features
- y denotes the output variable to be predicted
- n is number of features
- *m* is the number of training examples
- $x^{(i)}$ is the i^{th} training example
- $x_{j}^{(i)}$ is the j^{th} feature of the i^{th} training example

Multivariate Hypothesis

The hypothesis in case of univariate linear regression was,

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Extending the above function to multiple features, hypothesis of multivariate linear regression is given by,

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

= $\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$, where $x_0 = 1$ (1)
= $\theta^T x$, vectorizing above equation

Where,

$$\circ \ heta = egin{bmatrix} heta_0 \ heta_1 \ dots \ heta_n \end{bmatrix} \in \mathbb{R}^{n+1} ext{ and } x = egin{bmatrix} x_0 \ x_1 \ dots \ x_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

Multivariate Cost Function

• 1

The cost function for univariate linear regression was,

$$J(heta_0, heta_1) = rac{1}{2m}\sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2$$

Extending the above function to multiple features, the cost function for multiple features is given by,

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} \left(\theta^{T} x^{(i)} - y^{(i)} \right)^{2}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\sum_{j=0}^{n} \theta_{j} x_{j}^{(i)} \right) - y^{(i)} \right)^{2}$$
Where θ is a vector give by $\theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}$

$$(2)$$

Multivariate Gradient Descent

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$ Parameters: $\theta_0, \theta_1, \dots, \theta_n$ Cost function: $J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$

 $\begin{array}{l} \text{Gradient descent:} \\ \text{Repeat } \{ \\ \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n) \\ \} \\ \begin{array}{l} \text{(simultaneously update for every } j = 0, \dots, n) \end{array} \end{array}$

Multivariate Gradient descent

$$h_{\theta}(x) = \theta_{0}x_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \dots + \theta_{n}x_{n}, \quad x_{0} =$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} ((\theta_{0}x_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \dots + \theta_{n}x_{n}) - y^{(i)})^{2}$$

 $ext{repeat until convergence} \left\{ heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta)
ight.$

(3)

1

$$\frac{\partial}{\partial \theta_0} J(\theta) = \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\frac{\partial}{\partial \theta_1} J(\theta) = \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\frac{\partial}{\partial \theta_2} J(\theta) = \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$
...

Evaluating the partial derivative $\frac{\partial}{\partial \theta_i} J(\theta)$ gives,

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)} \tag{4}$$

Multivariate Gradient descent

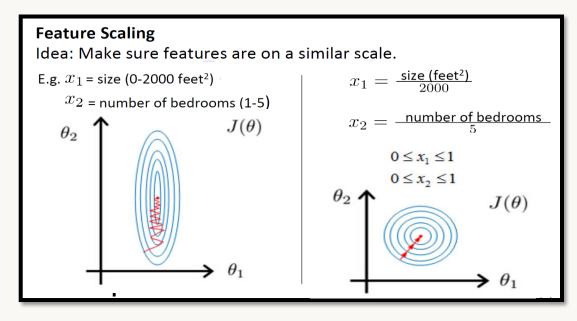
Univariate Gradient decent **Gradient Descent** Previously (n=1): Repeat { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$ $\frac{\partial}{\partial \theta_0} J(\theta)$ $heta_1 := heta_1 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x^{(i)}$ (simultaneously update $heta_0, heta_1$)

$$\label{eq:main_state_state} \begin{split} & \text{New algorithm } (n \geq 1); \\ & \text{Repeat } \Big\{ \\ & \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ & \quad (\text{simultaneously update } \theta_j \text{ for } \\ & \quad j = 0, \dots, n) \Big\} \end{split}$$

Feature Scaling

Feature Scaling (Normalization)

• *Normalization* refers to normalizing the data dimensions so that they are of approximately the same scale.



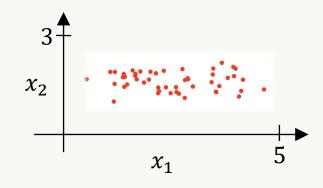
 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

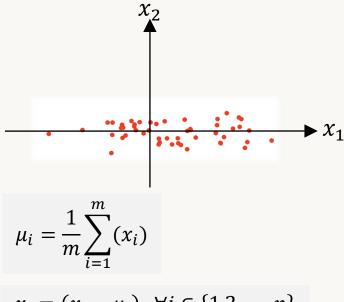
After **normalization** Contours become more like circles (as scaled between 0 and 1)

- As seen above, if the contours are *skewed* then learning steps would take longer to converge as the steps would be more prone to *oscillatory behavior* as shown in <u>the left plot</u>.
- Whereas <u>if the features are properly scaled</u>, then the plot is *evenly distributed*, and the steps of gradient descent have better profile of convergence.

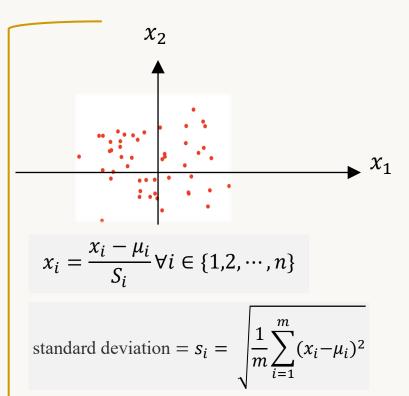
Feature Scaling (Normalization)

• Normalizing training sets



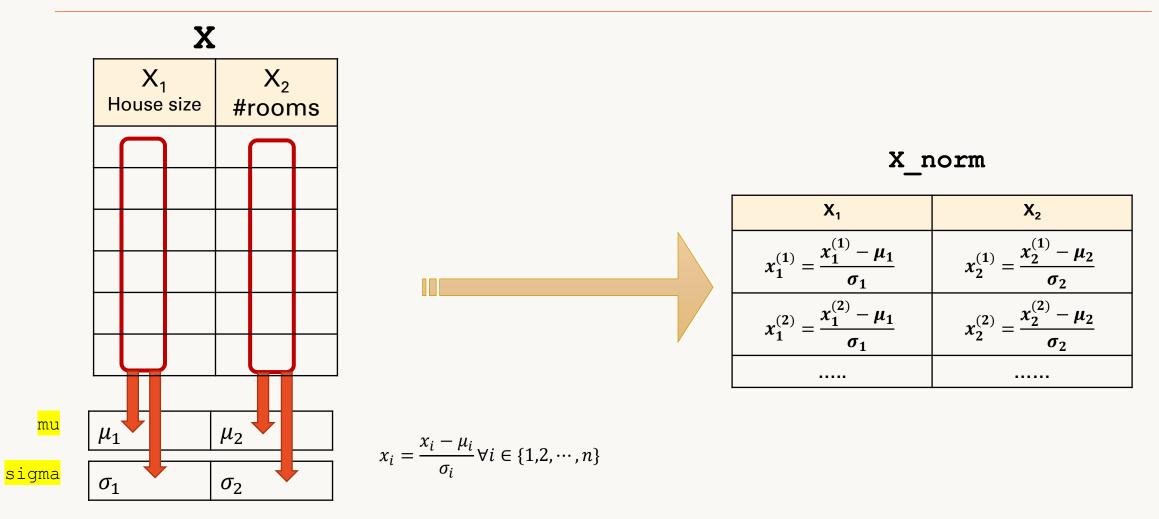


- $x_i = (x_i \mu_i) \quad \forall i \in \{1, 2, \cdots, n\}$
- Mean Normalization is the most common form of preprocessing. It involves subtracting the mean across every individual *feature* in the data and has the geometric interpretation of *centering the cloud of data around the origin* along every dimension.
 - Not applied to the feature X_0 as it always =1



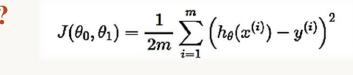
- x_i is the feature value
- μ_i is the mean
- *S_i* is the standard deviation or the range i.e., max-min

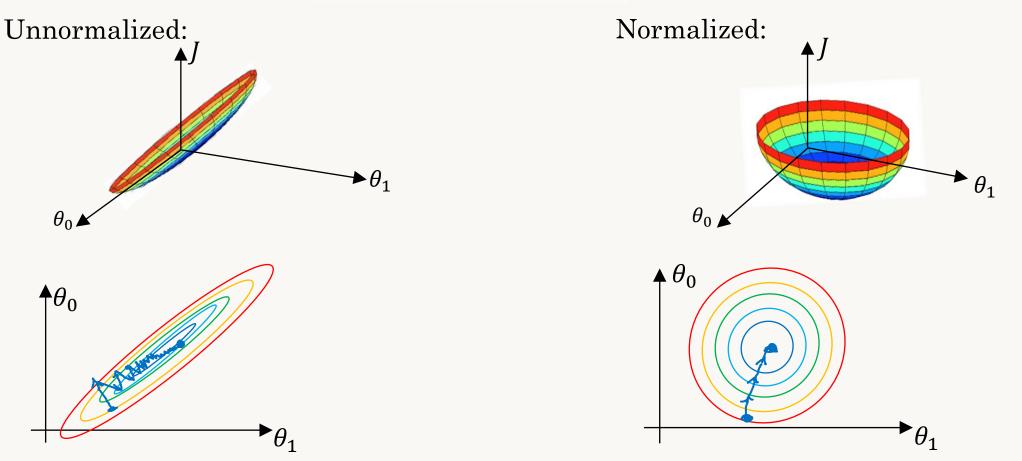
Feature Normalization



Feature Normalization

• Why normalize inputs?

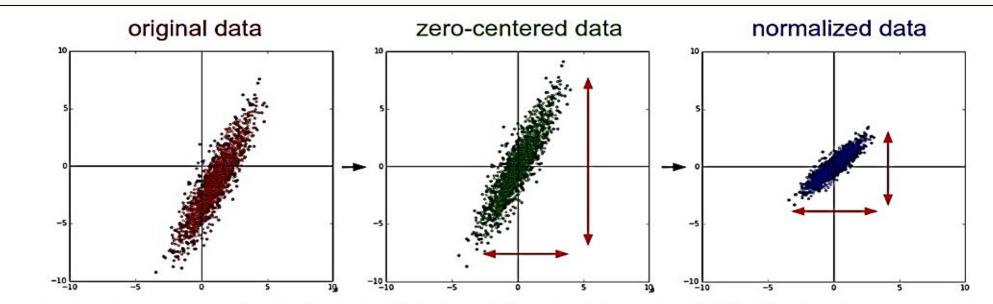




Dr. Aeshah Alsughayyir

Feature Normalization

• More illustrations



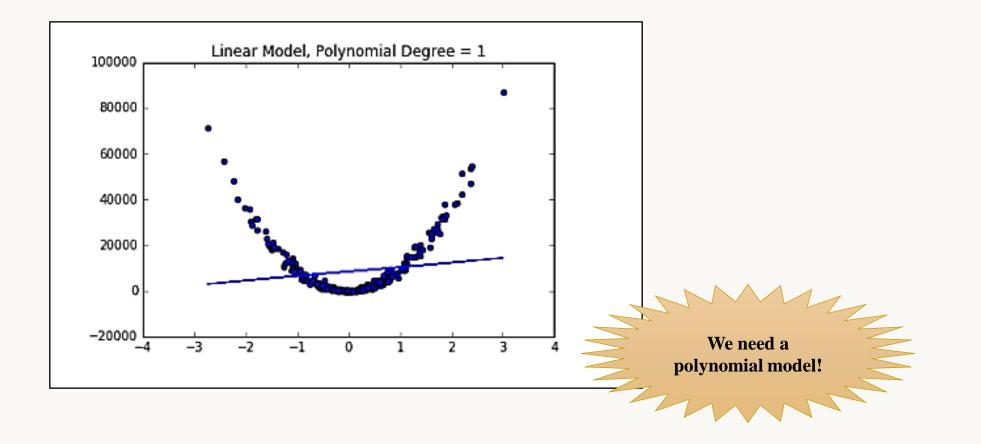
Common data preprocessing pipeline. Left: Original toy, 2-dimensional input data. Middle: The data is zero-centered by subtracting the mean in each dimension. The data cloud is now centered around the origin. Right: Each dimension is additionally scaled by its standard deviation. The red lines indicate the extent of the data - they are of unequal length in the middle, but of equal length on the right.

Note: The *feature normalization* must be applied to both instances from the **training** and **testing** sets

• In Feature Engineering

- ✓ Sometimes it might be fruitful to *generate new features* by combining the existing ones.
 - For example, given *width* and *length* of a property to predict *price*
- ✓ It might be helpful to use *area* of the property, i.e., *width* * *length* as an additional feature.

Dr. Aeshah Alsughayyir



Polynomial regression is useful as it allows us to fit a model to nonlinear data.

Dr. Aeshah Alsughayyir

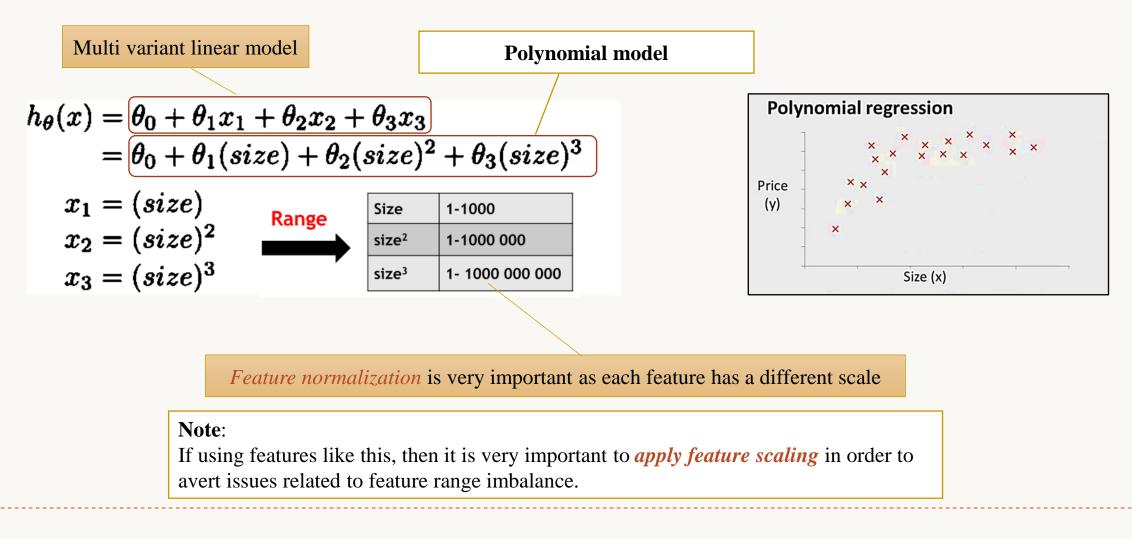
The concept of feature engineering can be used to achieve **polynomial regression**. Say the polynomial hypothesis chosen is,

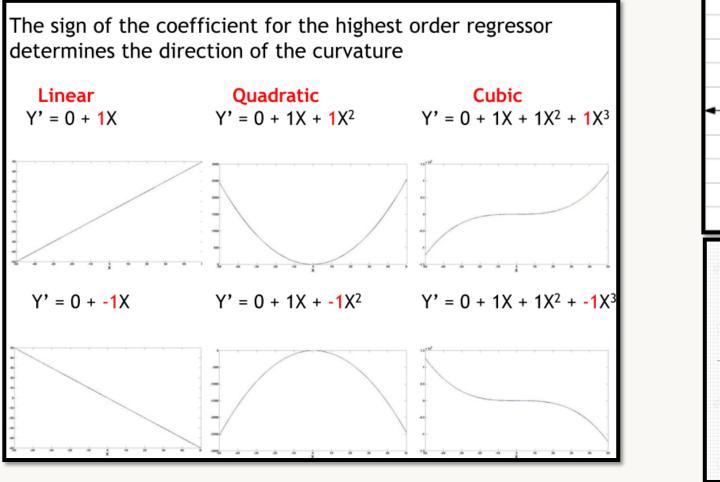
 $h_ heta(x) = heta_0 + heta_1 \, x + heta_2 \, x^2 + \dots + heta^n \, x^n$

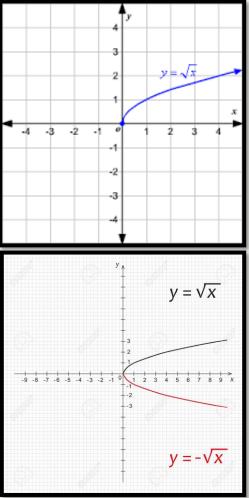
This function can be addressed as multivariate linear regression by substitution and is given by,

$$h_ heta(x) = heta_0 + heta_1 \, x_1 + heta_2 \, x_2 + \dots + heta_n \, x_n$$

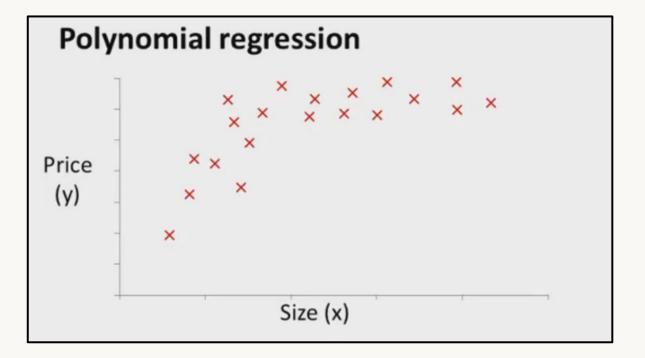
• Where $x_n = x^n$



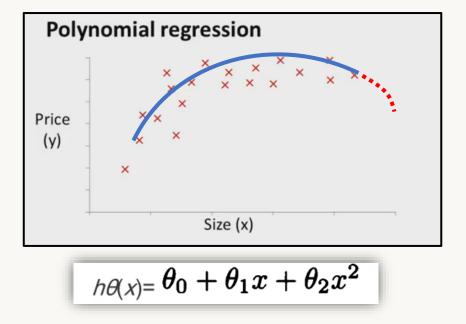




• Which model is the best ?



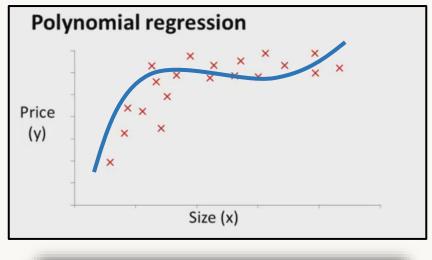
• Which model is the best ?



Not accurate: the price should be increased when size increases

Dr. Aeshah Alsughayyir

• Which model is the best ?

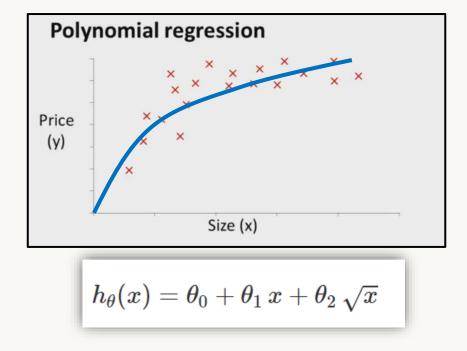


$$h\theta(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Overfitting: lack of generalization

Dr. Aeshah Alsughayyir

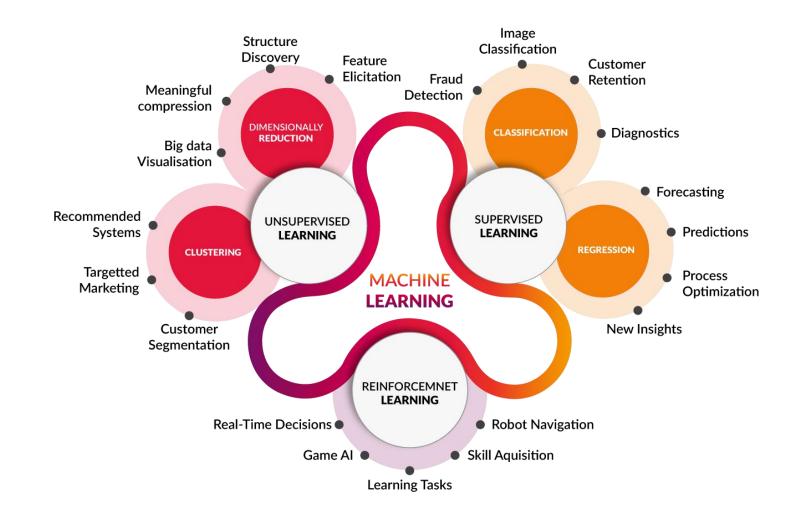
• Which model is the best ?



Seems to be good:

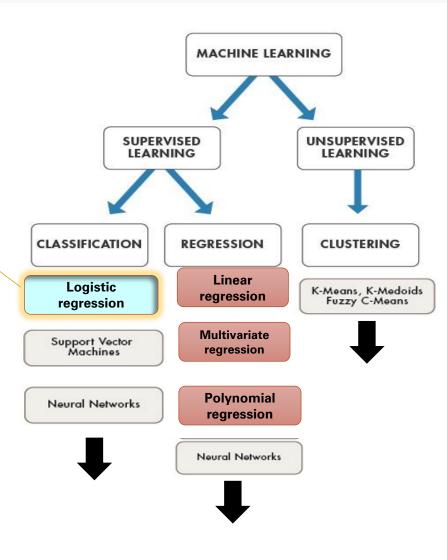
a non-decreasing function as opposed to quadratic function which comes back down

Logistic Regression Model

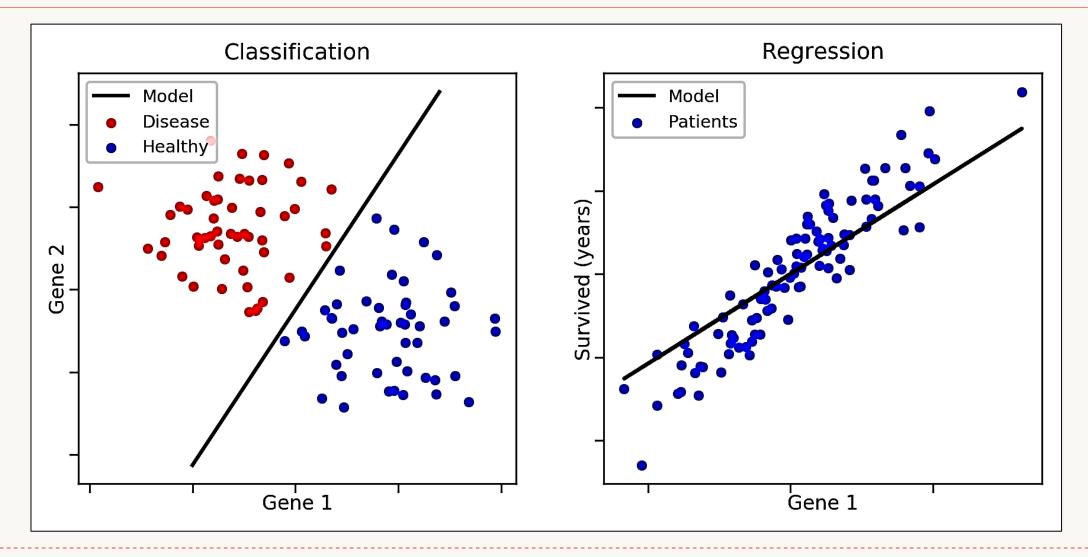


Note:

Logistic regression is used for classification not for regression (prediction) like linear/polynomial regression.



Classification vs. Prediction (regression)

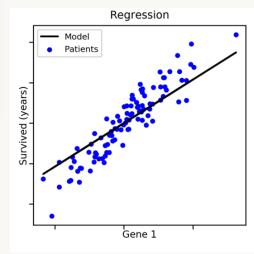


Classification vs. Prediction (regression)

Classification:

- predicts categorical class labels
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Prediction:
 - models <u>continuous-valued functions</u>, i.e., predicts unknown or missing values





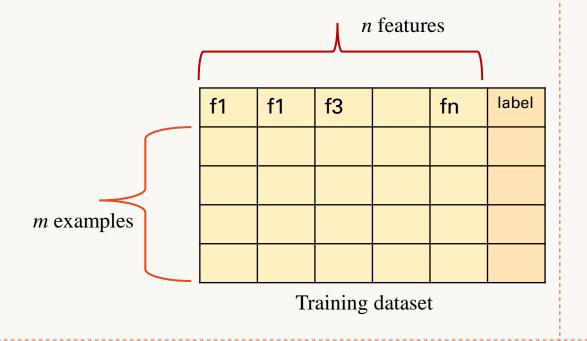
Classification applications

- Typical Applications of Classification
 - credit approval
 - target marketing
 - medical diagnosis
 - treatment effectiveness analysis

- **Email**: Spam / Not Spam?
- **Online Transactions**: Fraudulent (Yes / No)?
- **Tumor**: Malignant / Benign ?

 $label \in \{0,1\}$

0: "Negative Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor)

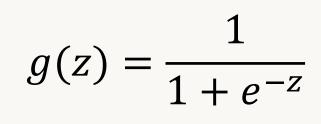


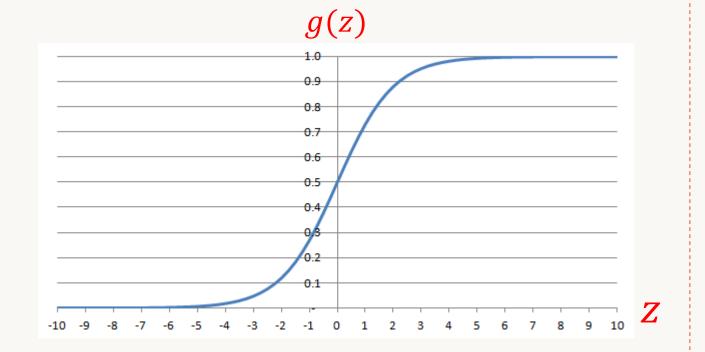
- The output is the class label $\rightarrow 0$ or 1
- Our hypothesis should produce zero or one
- ML job is to find the weights for the features for a function where its output is zero or one
- And we need a model where: $0 \le h_{\theta}(x) \le 1$

Suggestion is to use the sigmoid function

Sigmoid Function or Logistic Function.

• *Plot of the sigmoid function* is given below which shows no matter what the value of *z*, the function returns a value between 0 and 1





Dr. Aeshah Alsughayyir

Logistic Regression

- for 0 ≤ h_θ(x) ≤ 1 is to be true, there is a need of squashing function, i.e., a function which limits the output of hypothesis between given range.
- For logistic regression sigmoid function is used as the squashing function.
- The hypothesis for logistic regression is give by: $h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

Logistic Regression (Cont.)

• The value of hypothesis $h_{\theta}(x)$ is interpreted as the probability that the input x belongs to class y=1, i.e., probability that y=1, given x, parametrized by θ .

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

It can be mathematically represented as,

$$h_{ heta}(x) = P(y = 1 | x; heta)$$

The fundamental properties of probability holds here, i.e.,

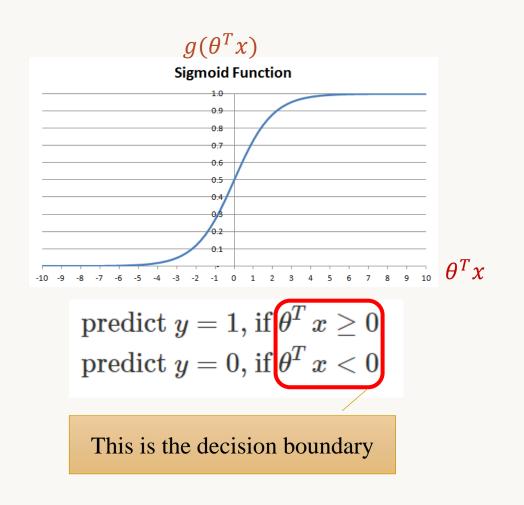
$$P(y=0|x; heta)+P(y=1|x; heta)=1$$

Decision Boundary

Decision Boundary

• For the given hypothesis of logistic regression, say $\delta = 0.5$ is chosen as the **threshold for the binary classification.**

$$label \in \{0,1\} \quad \stackrel{\text{O: "Negative Class"}}{_{1: \text{"Positive Class"}}}$$
$$h_{\theta}(x) = g(\theta^{T}x) = \frac{1}{1 + e^{-\theta^{T}x}}$$



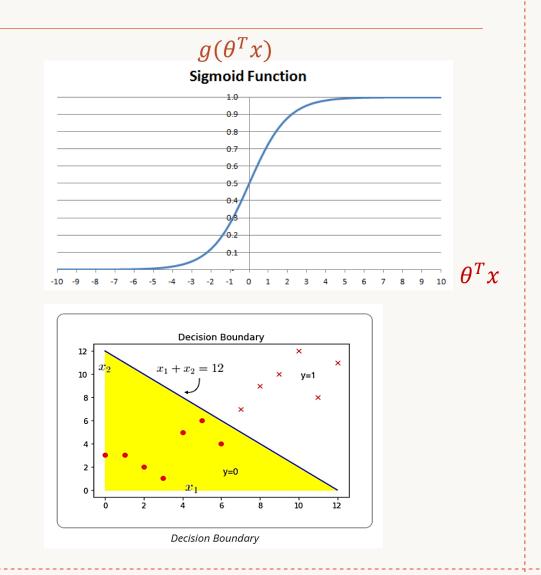
Linear Decision Boundary

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

In this example $\theta^T x = -12 + x_1 + x_2$

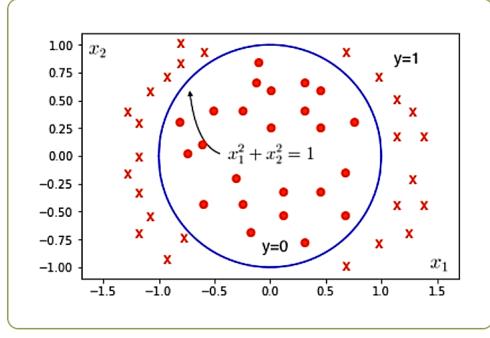
$$ext{predict } y = 1, ext{if} heta^T x \geq 0 \ ext{predict } y = 0, ext{if} heta^T x < 0 \ ext{}$$

$$ext{predict } y = 1, ext{if } -12 + x_1 + x_2 \geq 0 ext{ or } x_1 + x_2 \geq 12 ext{predict } y = 0, ext{if } -12 + x_1 + x_2 < 0 ext{ or } x_1 + x_2 < 12 ext{}$$

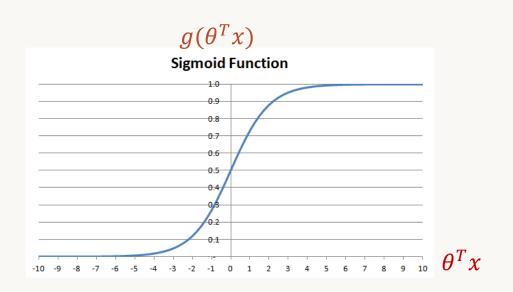


Nonlinear Decision Boundary

• It is possible to achieve *non-linear decision boundaries* by using the higher order polynomial terms and can be incorporated in a way similar to how multivariate linear regression handles polynomial regression.



Non-Linear Decision Boundary



Nonlinear Decision Boundary (Cont.)

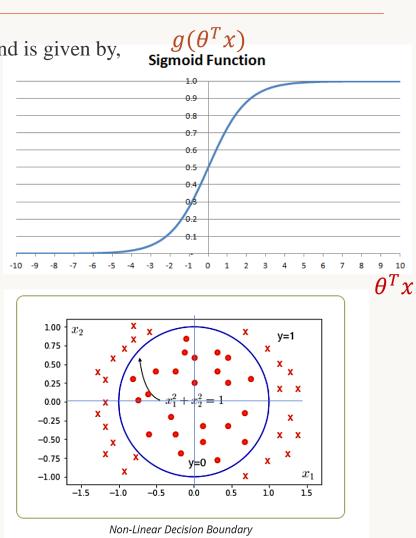
Say, the hypothesis of the logistic regression has higher order polynomial terms, and is given by, $\theta^T x = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

let optimal θ given below would form an optimal decision boundary $\theta^T = [-1 \ 0 \ 0 \ 1 \ 1]$

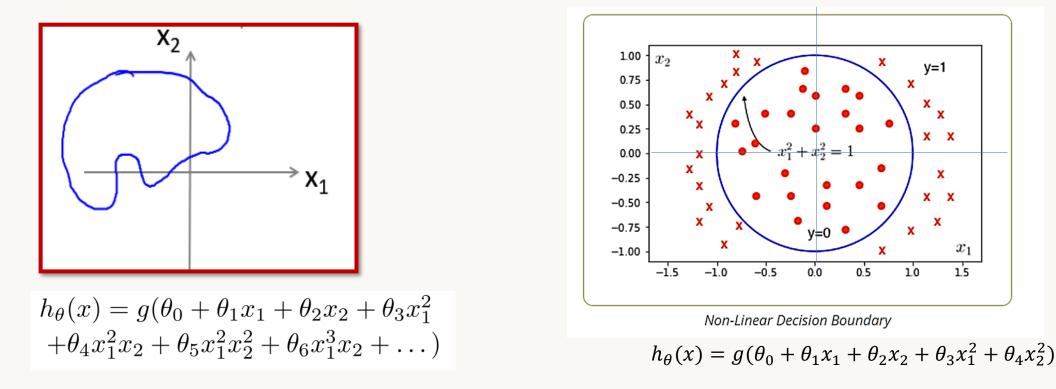
Substituting
$$\theta^T x = -1 + x_1^2 + x_2^2$$

Decision boundary is $x_1^2 + x_2^2 = 1$
predict $y = 1$, if $-1 + x_1^2 + x_2^2 \ge 0$ or $x_1^2 + x_2^2 \ge 1$
predict $y = 0$, if $-1 + x_1^2 + x_2^2 < 0$ or $x_1^2 + x_2^2 < 1$



Nonlinear Decision Boundary (Cont.)

• As the order of features is increased more and more **complex decision** boundaries can be achieved by logistic regression. *Be aware of overfitting !!*



Gradient Descent is used to search for the best parameter values of θ that make the decision boundary

Logistic Regression Cost Function

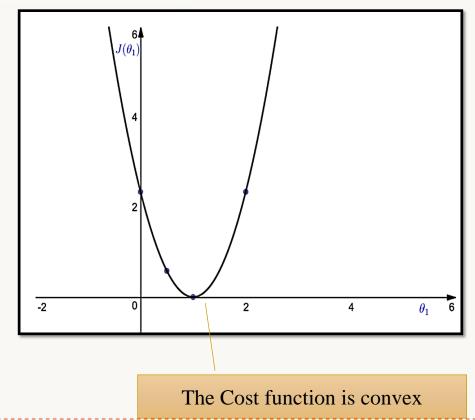
Logistic Regression (Cost Function)

Recall that previously in linear regression:

It can be seen in <u>Mulivariate Linear Regression</u> that the cost function for the linear regression is given by,

$$egin{split} J(heta) &= rac{1}{m} \sum_{i=1}^m rac{1}{2} \Big(h_ heta(x^{(i)}) - y^{(i)} \Big)^2 \ &= rac{1}{m} \sum_{i=1}^m Cost(h_ heta(x^{(i)}), y^{(i)}) \end{split}$$

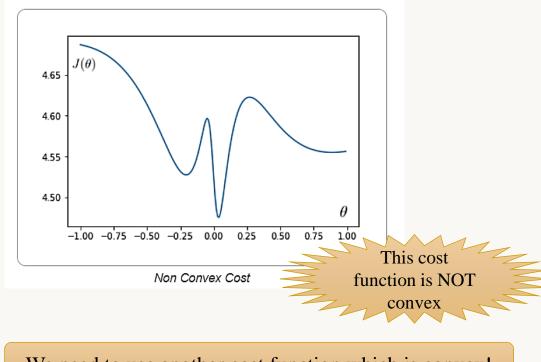
 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$



- The same cost function of multivariate regression would not work well for the logistic regression because the hypothesis for logistic regression is the complex sigmoid function
- Below, gives **non-convex** curve with many **local minima** as shown in the plot below.
- So, gradient descent will not work properly for such a case and therefore it would be very difficult to minimize this function.

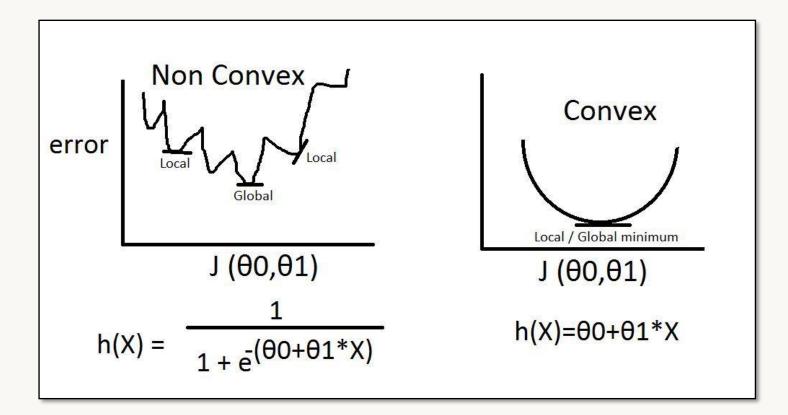
$$egin{aligned} h_{ heta}(x) &= g(heta^T x) = rac{1}{1+e^{- heta^T x}} \ J(heta) &= rac{1}{m} \sum_{i=1}^m rac{1}{2} \Big(h_{ heta}(x^{(i)}) - y^{(i)}\Big)^2 \end{aligned}$$

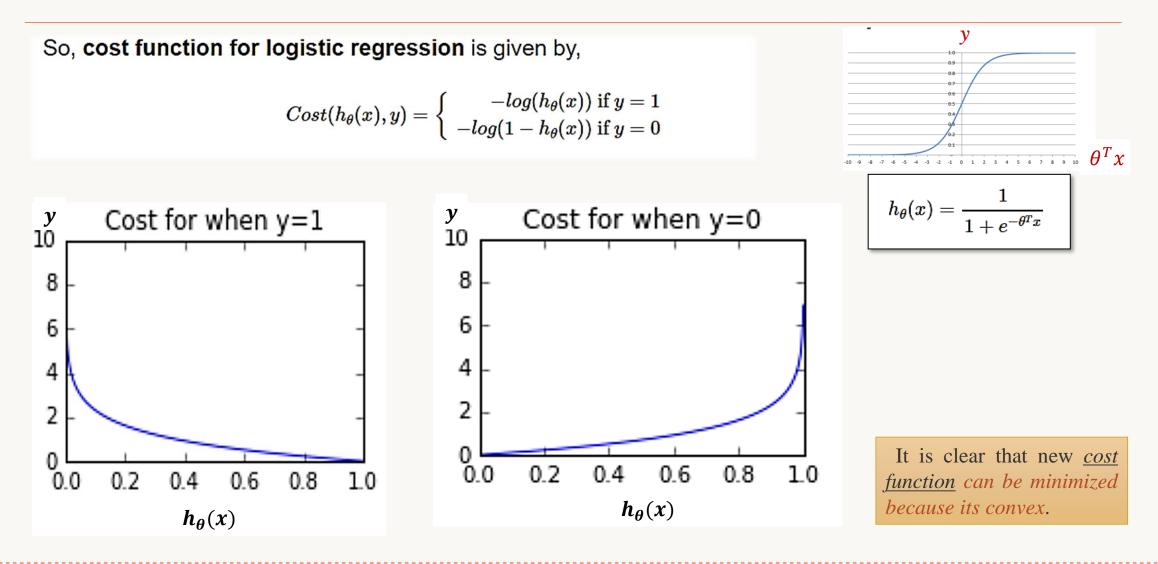
$$=rac{1}{m}\sum_{i=1}^{m}Cost(h_{ heta}(x^{(i)}),y^{(i)})$$

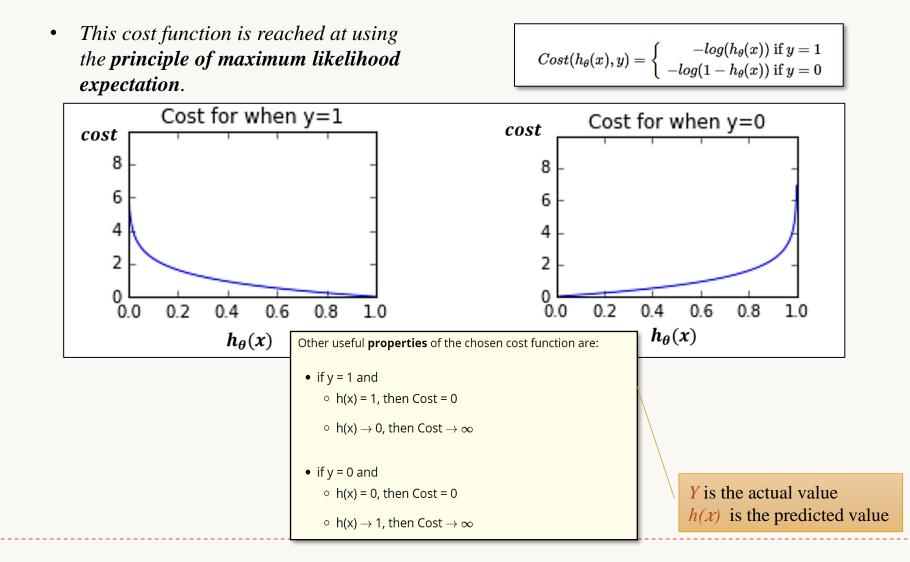


We need to use another cost function which is convex!

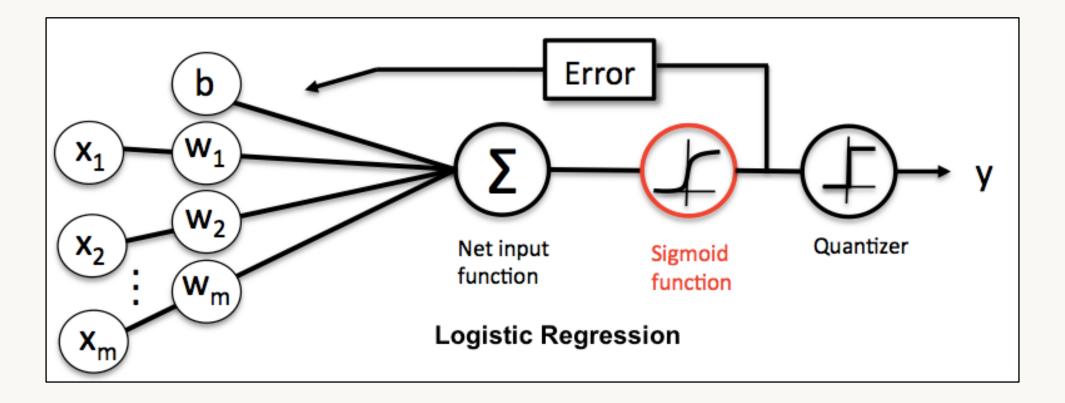
• More illustration:







Summary:



Gradient Descent for Logistic Regression

Gradient Descent for Logistic Regression

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

$$Cost(h_{\theta}(x, y) = \left\{ -\frac{1}{\log(1 - h_{\theta}(x))} \text{ if } y = 0 \right\}$$
Want $\min_{\theta} J(\theta)$:
Repeat $\left\{ \theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta) \right\}$ (simultaneously update all θ_{j})
Repeat $\left\{ \theta_{j} := \theta_{j} - \alpha \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \right\}$ (simultaneously update all θ_{j})
$$\theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix} \in \mathbb{R}^{n+1} \text{ and } x = \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{n} \end{bmatrix} \in \mathbb{R}^{n+1}$$

Note: Feature Scaling is as important for logistic regression as it is for linear regression as it helps the process of gradient descent.

Gradient Descent for Logistic Regression (Cont.)

Advanced Optimization

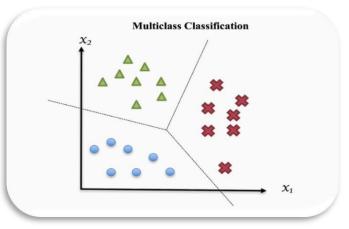
Given the functions for calculation of $J(\theta)$ and $\frac{\partial}{\partial \theta}J(\theta)$ one can apply one of the many **optimization techniques other than gradient descent**:

- Conjugate Descent
- BFGS
- L-BFGS

Advantage	Disadvantages
No need to manually pick $lpha$	More complex
Often faster than gradient descent	Harder to debug

These algorithms automatically find out the best α *value.*

Multiclass Logistic Regression



Multiclass Logistic Regression

• Multiclass logistic regression is an extension of the binary classification making use of the **one-vs-all** or **one-vs-rest** classification strategy.

Intuition

Given a classification problem with n distinct classes, train n classifiers, where each classifier draws a decision boundary for one class vs all the other classes. Mathematically,

$$h_{\theta}^{(i)}(x) = P(y=i|x;\theta)$$

For Example:

• Email foddering/tagging:

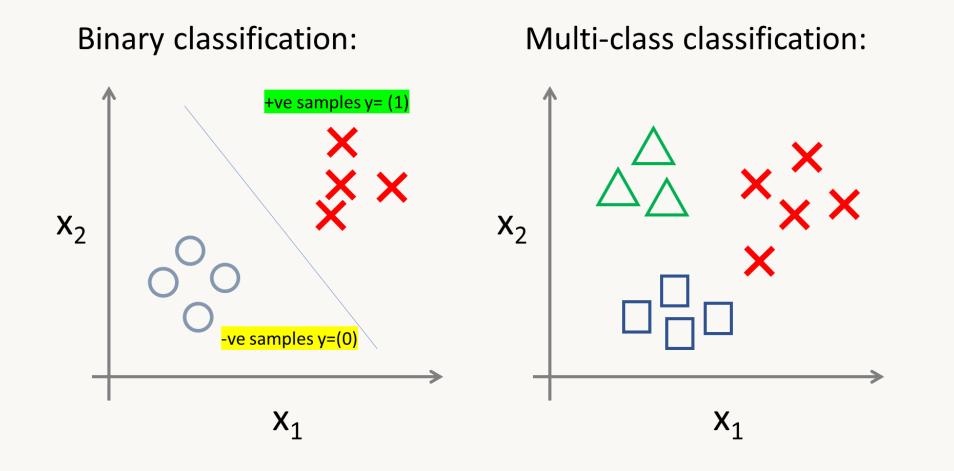
Work, Friends, Family, Hobby y=1 y=2 y=3 y=4

• Medical diagrams:

Not ill, Cold, Flu y=1 y=2 y=3

• Weather:

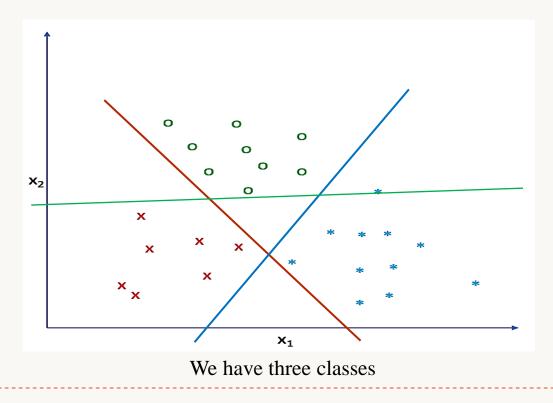
Sunny, Cloudy, Rain, Snow y=1 y=2 y=3 y=4



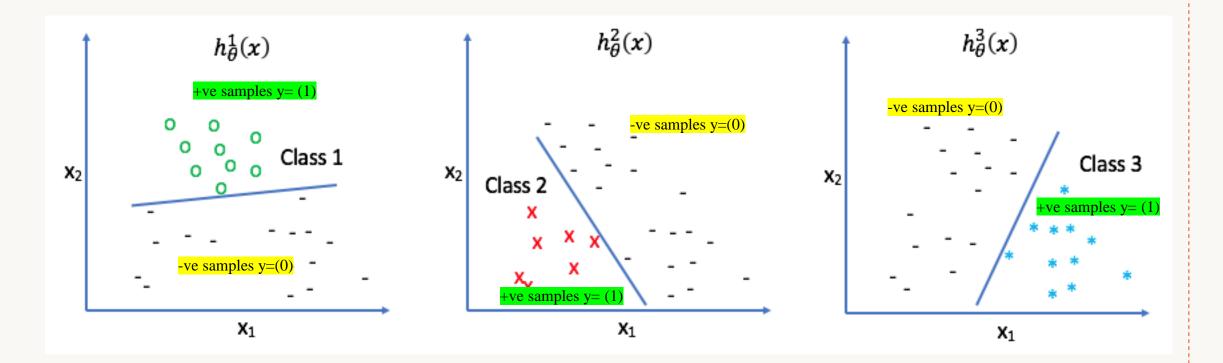
$$x \in egin{bmatrix} 1 \ x_1 \ dots \ x_n \end{bmatrix}, \hspace{0.1cm} y \in \{1,2,\ldots,k\}$$

For a dataset with k classes, you'd train a collection of k classifiers.

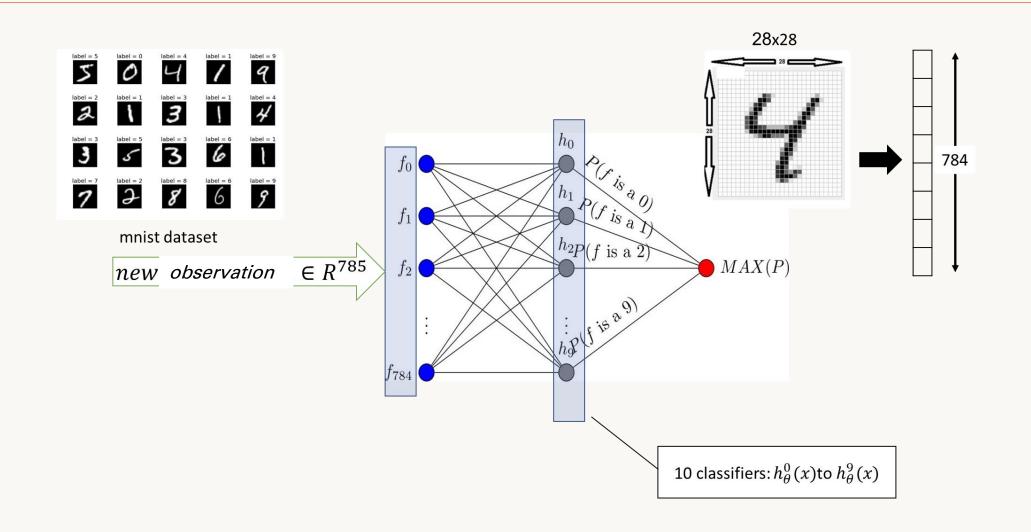
 $h_{ heta}^{1}\left(x
ight),h_{ heta}^{2}\left(x
ight),\ldots h_{ heta}^{k}\left(x
ight)$



Dr. Aeshah Alsughayyir

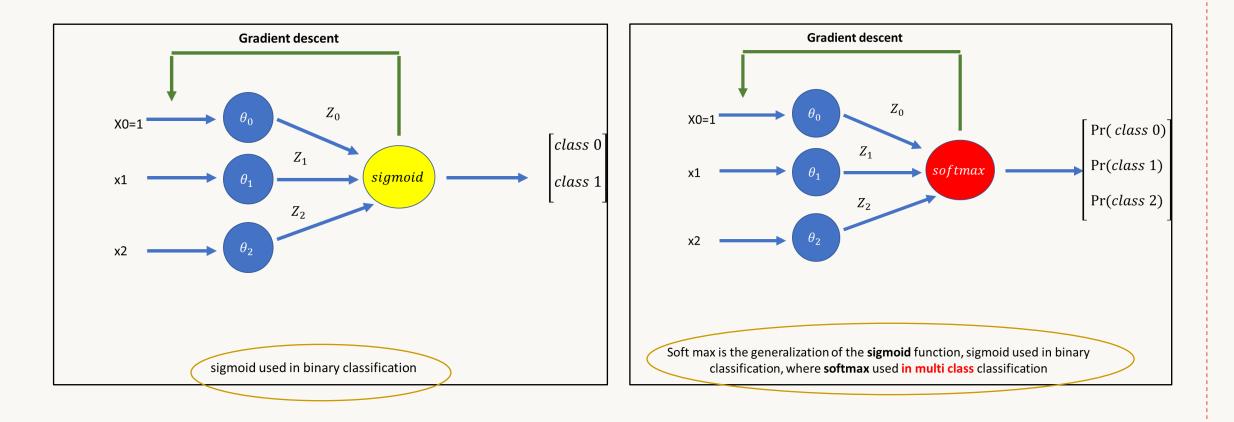


- Each classifier $h_{\theta}^{i}(x)$ returns the probability that an observation belongs to **class i.**
- All we have to do in order to predict the class of an *observation* is to select the class of whichever classifier returns the **highest probability**.

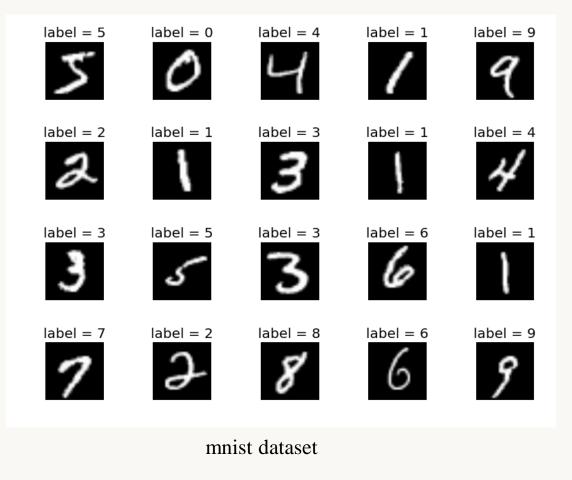


Dr. Aeshah Alsughayyir

Multiclass Logistic Regression (Squashing Function)

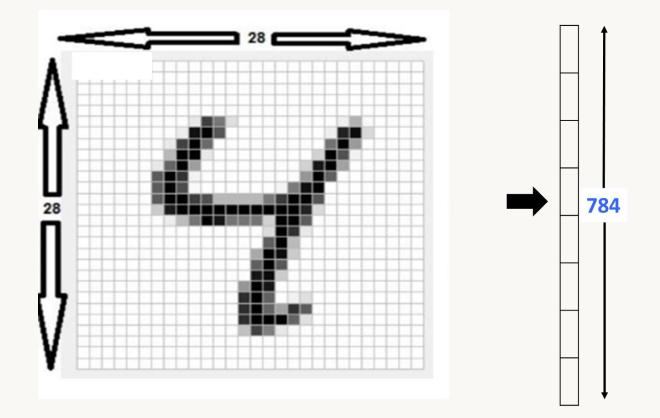


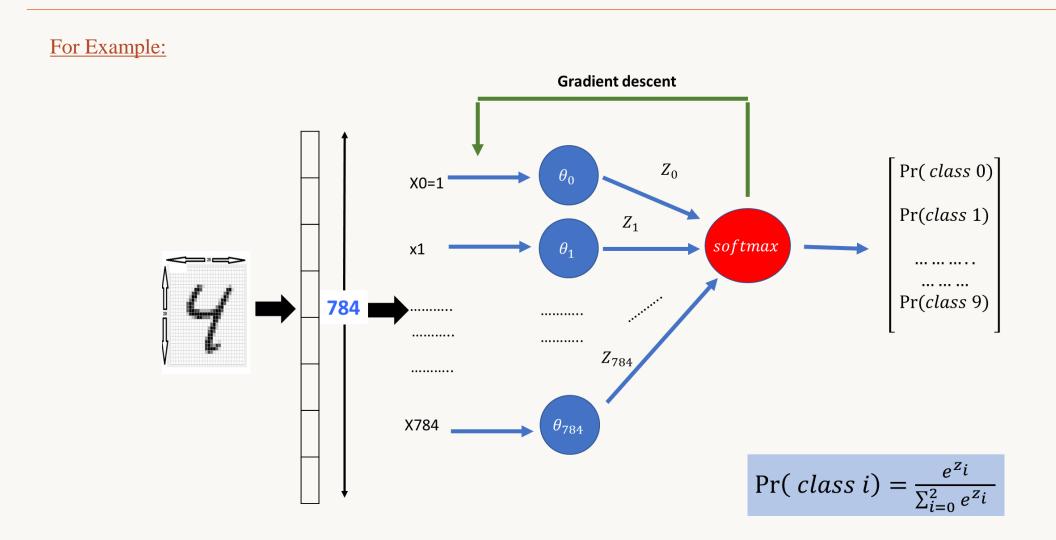
For Example:



Dr. Aeshah Alsughayyir

For Example:





Dr. Aeshah Alsughayyir

Summary

Implementation Note: In the multivariate case, the cost function can also be written in the following vectorized form:

$$J(\theta) = \frac{1}{2m} \left(X\theta - \vec{y} \right)^T \left(X\theta - \vec{y} \right)$$

where

$$X = \begin{bmatrix} - (x^{(1)})^T - \\ - (x^{(2)})^T - \\ \vdots \\ - (x^{(m)})^T - \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}.$$

The vectorized version is efficient when you're working with numerical computing tools like Octave/MATLAB. If you are an expert with matrix operations, you can prove to yourself that the two forms are equivalent.

- Multi-class Classification (Useful videos):
 - ✓ <u>https://www.youtube.com/watch?v=LLux1SW--oM</u>
 - ✓ <u>https://www.youtube.com/watch?v=ueO_Ph0Pyqk</u>

