
A Simple example k-means (using K=2)

Individual	Variable 1	Variable 2
1	+ 1	1
2	1.5	2
3	3	4
4	5	7
5	3.5	5
6	4.5	5
7	3.5	4.5

Step 1:

<u>Initialization</u>: Randomly we choose following two centroids (k=2) for two clusters. In this case the 2 centroid are: m1=(1.0,1.0) and m2=(5.0,7.0).

	Individual	Mean Vector
Group 1	1 +	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

In iteration 1:

Step 2:

	Centroid 1	Centroid 2
1	$\int (1-1)^2 + (1-1)^2 = 0$	$J(5-1)^2 + (7-1)^2 = 7.21$
2	$J(1-1.5)^2 + (1-2)^2 = 1.12$	$f(5-1.5)^2 + (7-2)^2 = 6.10$
3	$J(1-3)^2 + (1-4)^2 = 3.61$	$\int (5-3)^2 + (7-4)^2 = 3.61$
4	$\int (1-5)^2 + (1-7)^2 = 7.21$	$\int (5-5)^2 + (7-7)^2 = 0$
5	$\int (1-3.5)^2 + (1-5)^2 = 4.72$	$\int (5-3.5)^2 + (7-5)^2 = 2.5$
6	$\int (1-4.5)^2 + (1-5)^2 = 5.31$	$\int (5-4.5)^2 + (7-5)^2 = 2.06$
7	$J(1-3.5)^2 + (1-4.5)^2 = 4.30$	$\int (5-3.5)^2 + (7-4.5)^2 = 2.92$

Step 2:

- Thus, we obtain two clusters containing: {1,2,3} and {4,5,6,7}.
- Their new centroids are:

Group 1 =
$$\left(\frac{1+1.5+3}{3}\right)$$
, $\left(\frac{1+2+4}{3}\right)$ = (1.83, 2.33)
Group 2 = $\left(\frac{5+3.5+4.5+3.5}{4}\right)$, $\left(\frac{7+5+5+4.5}{4}\right)$ = (4.12, 5.38)

In iteration 2:

Step 3:

	Centroid 1	Centroid 2
1	$\sqrt{(1.83 - 1)^2 + (2.33 - 1)^2} = 1.57$	$\int (4.12 - 1)^2 + (5.38 - 1)^2 = 5.38$
2	$\int (1.83 - 1.5)^2 + (2.33 - 2)^2 = 0.47$	$\int (4.12 - 1.5)^2 + (5.38 - 2)^2 = 4.29$
3	$\int (1.83 - 3)^2 + (2.33 - 4)^2 = 2.04$	$\int (4.12 - 3)^2 + (5.38 - 4)^2 = 1.78$
4	$\int (1.83 - 5)^2 + (2.33 - 7)^2 = 5.64$	$\int (4.12 - 5)^2 + (5.38 - 7)^2 = 1.84$
5	$\int (1.83 - 3.5)^2 + (2.33 - 5)^2 = 3.15$	$\int (4.12 - 3.5)^2 + (5.38 - 5)^2 = 0.73$
6	$\int (1.83 - 4.5)^2 + (2.33 - 5)^2 = 3.78$	$\int (4.12 - 4.5)^2 + (5.38 - 5)^2 = 0.54$
7	$\int (1.83 - 3.5)^2 + (2.33 - 4.5)^2 = 2.74$	$\int (4.12 - 3.5)^2 + (5.38 - 4.5)^2 = 1.08$

Therefore, the new clusters are:

{1,2} and {3,4,5,6,7}
Group^I1 =
$$(\frac{1+1.5}{2})$$
, $(\frac{1+2}{2})$ = (1.25, 1.5)
Group 2 = $(\frac{3+5+3.5+4.5+3.5}{5})$, $(\frac{4+7+5+5+4.5}{5})$ = (3.9, 5.1)

In iteration 3:

Step 3:

k

	Centroid 1	Centroid 2	
1	$J(1.83 - 1)^2 + (2.33 - 1)^2 = 1.57$	$\int (4.12 - 1)^2 + (5.38 - 1)^2 = 5.38$	
2	$\int (1.83 - 1.5)^2 + (2.33 - 2)^2 = 0.47$	$J(4.12 - 1.5)^2 + (5.38 - 2)^2 = 4.29$	
3	$\int (1.83 - 3)^2 + (2.33 - 4)^2 = 2.04$	$\int (4.12 - 3)^2 + (5.38 - 4)^2 = 1.78$	
4	$J(1.83 - 5)^2 + (2.33 - 7)^2 = 5.64$	$J(4.12-5)^2 + (5.38-7)^2 = 1.84$	
5	$\int (1.83 - 3.5)^2 + (2.33 - 5)^2 = 3.15$	$J(4.12 - 3.5)^2 + (5.38 - 5)^2 = 0.73$	
6	$\int (1.83 - 4.5)^2 + (2.33 - 5)^2 = 3.78$	J(4.12-4.5) ² + (5.38-5) ² = 0.54	
7	$f(1.83 - 3.5)^2 + (2.33 - 4.5)^2 = 2.74$	$\int (4.12 - 3.5)^2 + (5.38 - 4.5)^2 = 1.08$	

Therefore, there is no change in the cluster.

Thus, the algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.