
Sequence Diagrams

Software Modeling and Analysis
CS 284

Lab 5

Something is Missing!

Use cases allow your model to describe what your

system must be able to do (functional requirements)

Classes allow your model to describe the

different types of parts (objects / classes)that

make up your system's structure.

Something is Missing!

There's one large piece that's missing; with use cases

and classes alone, you can't yet model how your

system is actually going to do its job.

This is where interaction diagrams, and specifically

sequence diagrams, come into play.

In today’s session you will

learn ..

What is sequence diagrams

Where to use sequence diagrams

Graphical notations: participants, lifelines ,

activation bars, and messages .

Sequence Diagrams

Sequence diagrams are all about capturing the order of

interactions between parts of your system.

Using a sequence diagram, you can describe which interactions

will be triggered when a particular use case is executed and in

what order those interactions will occur.

Typically, a sequence diagram captures the behavior of a single

scenario. It shows a number of example objects and the messages

that are passed between these objects within the use case.

When to Use Sequence Diagrams?

When you want to look at the behavior of several

objects within a single use case.

Sequence diagrams are good at showing collaborations among

the objects.

If you want to look at the behavior of a single object across many

use cases, use a state diagram.

If you want to look at behavior across many use cases or many

threads, consider an activity diagram.

How it looks like!

Common Graphical notations of
Sequence Diagram

Participants and Lifelines in a Sequence

Diagram

Participants

Participants are the parts of your system (usually software objects) that
interact with each other during the sequence.

Lifeline

Each participant has a corresponding lifeline running down the page. A
participant's lifeline shows the existence of object over a period of time.

Participant Names

9

Participants on a sequence diagram can be named in number of

different ways, picking elements from the standard format:

The elements of the format that you pick to use for a particular

participant will depend on the information known about

a participant at a given time.

Activation Bars

Activation Bar
Shows the period of time that an
object is performing an action.

Activation Bars (Cont.)

When a message is passed to a participant it triggers, or invokes, the

receiving participant into doing something; at this point, the

receiving participant is said to be active. To show that a participant

is active, i.e., doing something, you can use an activation bar.

An activation bar can also be shown on the sending end. It indicates

that the sending participant is busy while it sends the message.

Activation bars are optional—they can clutter up a diagram.

Messages in Sequence Diagrams

An interaction in a sequence diagram occurs when one

participant decides to send a message to another participant.

Messages in Sequence Diagrams

(Cont.)

How to specify a message in sequence diagram :

Messages on a sequence diagram are specified using an arrow from

the participant that wants to pass the message, the Message Caller, to

the participant that is to receive the message, the Message Receiver.

Direction of messages:

Messages can flow in whatever direction makes sense for the required

interaction—from left to right, right to left, or even back to the

Message Caller itself.

Think of a message as an event that is passed from a Message Caller to

get the Message Receiver to do something

Message Signatures

A message arrow comes with a description, or signature. The format

for a message signature is:

You can specify any number of different arguments on a message,

each separated using a comma. The format of an argument is:

Message Signature –

Examples

doSomething()

doSomething(number1 : Number, number2 : Number)

doSomething() : ReturnClass

myVar = doSomething() : ReturnClass

Nested Messages

When a message from one participant results in one or more

messages being sent by the receiving participant, those resulting

messages are said to be nested within the triggering message

Message Arrows

The type of arrowhead that is on a message is also important

when understanding what type of message is being passed.

For example, the Message Caller may want to wait for a message to

return before carrying on with its work—a synchronous message.

Or it may wish to just send the message to the Message Receiver

without waiting for any return as a form of "fire and forget" message

—an asynchronous message.

Sequence diagrams need to show these different types of

message using various message arrows.

Message Arrows (Cont.)

Synchronous Messages

A synchronous message is invoked when the Message Caller waits

for the Message Receiver to return from the message invocation

Asynchronous Messages

An asynchronous message is invoked by a Message Caller on a

Message Receiver, but the Message Caller does not wait for the

message invocation to return before carrying on with the rest of the

interaction's steps.

This means that the Message Caller will invoke a message on the

Message Receiver and the Message Caller will be busy invoking

further messages before the original message returns.

Asynchronous Messages–

Example

If you are designing a piece of software with a user interface that

supports the editing and printing of a set of documents. Your

application offers a button for the user to print a document.

Printing could take some time, so you want to show that after the

print button is pressed and the document is printing, the user can go

ahead and work with other things in the application. Here you need

a new type of message arrow: the asynchronous message arrow.

The Return Message

The return message is an optional piece of notation

that you can use at the end of an activation bar to show

that the control flow of the activation returns to the

participant that passed the original message.

In code, a return arrow is similar to reaching the

end of a method or explicitly calling a return

statement.

You don't have to use return messages —sometimes
they can really make your sequence diagram too busy
and confusing.

Besides that there is an implied return arrow on any
activation bars that are invoked using a synchronous
message.

The Return Message

Participant Creation and

Destruction Messages

Participants do not necessarily live for the entire

duration of a sequence diagram's interaction.

Participants can be created and destroyed

according to the messages that are being passed

With some implementation languages, such as Java, you will not

have an explicit destroy method so it doesn't make sense to show

one on your sequence diagrams.

It is all handled implicitly by the Java garbage collector.

In these cases, where another factor such as the garbage collector is

involved, you can either leave the object as alive but unused or

imply that it is no longer needed by using the destruction cross X

without an associated destroy method.

Participant Creation and

Destruction Messages (Cont.)

Participant Creation and

Destruction Messages (Cont.)

Time in Sequence Diagrams

Time in Sequence Diagrams

(Cont.)
A sequence diagram describes the order in which the interactions

take place, so time is an important factor.

Time on a sequence diagram starts at the top of the page, just beneath

the topmost participant heading, and then progresses down the page.

The order that interactions are placed down the page on a sequence

diagram indicates the order in which those interactions will take

place in time.

Time on a sequence diagram is all about
ordering, not duration.

Exercise 1

Suppose you have a customer who wants to buy an item from a vending

machine using a smart card.

Vending Machine.

A vending machine sells small, packaged, ready to eat items (chocolate bars, cookies, candies, etc.).

Each item has a price and a name. A customer can buy an item, using a smart card (issued by the

vending machine company). No other payment method (i.e. cash, credit card) are allowed. The

vending machine has a smart card reader that updates the available amount of money on the smart

card upon completing the sale process. Each time the customer enters the card, the card is validated

for purchase, if it is valid, the process sale will be accomplished, otherwise the card and the process

will be rejected.

The system supports the following functions:

• Sell an item (choose from a list of items, pay for an item, dispense an item)

• Recharge the machine with items

• Monitor the machine (number of sold items, number of sold items per type, total revenue)

• Set up the machine (define sold items and price of items)

The system can be used by a customer (who buys item),a maintenance employee (who recharges

and monitors the machines), an administrator (who sets up the machine).

1-Use case diagram:

The Scenario
Suppose the following flow of events for “buy an item” use case:

1. The customer inserts a card to the smart card reader.

2. The smart card reader checks the card validity (is the card valid or not).

3. The smart card reader responds to customer “The card is valid”.

4. The customer selects an item from the vending machine by typing its code.

5. The vending machine checks the item availability.

6. The vending machine get a response that “the item is available”.

7. The vending machine issues an order to sell the item.

8. The vending machine asks the smart card reader to update the card amount.

9. Then the smart card reader asks for the price of the selected item.

10.The smart card reader gets the price.

11.Then the smart card updates the card amount.

12.The vending machine asks the smart card reader to release the card.

13.The smart card reader releases the card to the customer.

14.The vending machine dispenses the item to the customer.

2- Sequence diagram

Example 2

Bringing a Use Case to

Life with a Sequence

Diagram

The Scenario

3 The Administrator enters the author's details.

4 The author's details are checked using the Author Credentials

Database.

5 The new regular blog account is created.

6 A summary of the new blog account's details are emailed to the

author.

1 The Administrator asks the system to create a new blog account.

2 The Administrator selects the regular blog account type.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Semantics

:C

/R:C

/R

an anonymous object from classe

C
an anonymous object from classe C

playing the role R

an anonymous object playing the role R

O/R:C
An object O from classe C

playing the role R

:PERSON

/Reader:PERSON

/Reader

Ali/Reader:PERSON

O1 AliObject O1

When to use sequence fragments.

What is a sequence fragment in sequence diagrams.

Types of sequence fragments.

Examples of using sequence fragments in a sequence

diagram.

Managing Complex Interactions with

Sequence Fragments

When to use Sequence fragments ?

The focus of our last session was on

understanding the purpose of sequence diagram as

well as using the basic notations for drawing simple

interactive sequence diagram.

However, those notations we have used so far, are

not sufficient if we want to show complex

interactions such as loops and alternate flows in a

diagram.

What is a Sequence fragment ?

A sequence fragment (Interaction fragment or

combined fragment) is represented as a box that

encloses a portion of the interactions within a

sequence diagram.

What is a Sequence fragment ?

Typically, a sequence fragment consists of :

Fragment's box

Interactions/Messages

Operator

One or more interaction operand

Guard condition/s

How does it look like ?
Example of a sequence fragment-alt

Guard condition

a parameter that is tested

on entry to the fragment

sequence

fragment's box

sequence

fragment's type

operator

messages

/interactions
Interaction

operands

What is a Sequence fragment ?

A sequence fragment's box overlaps the region of the

sequence diagram where the fragment's interactions take

place.

A fragment box can contain any number of interactions

and, for large complex interactions, further nested fragments

as well.

The top left corner of the fragment box contains an operator.

The fragment operator indicates which type of fragment this is.

What is a Sequence

fragment ?
Every sequence fragment contains at least one interaction

operand, which can contain messages and smaller combined

fragments.

Use Guard to describe the conditions in which the messages inside

it are performed.

For example, in a Loop combined fragment, you can use the guard

to specify the condition during which the loop continues.

In an alt combined fragment, you can specify

a separate condition for each interaction operand.

Types of Sequence

Fragments
There are several kinds of sequence fragments, next slides present

five of sequence fragment and explanations .

Examples of sequence fragments:

Option - opt

Alternatives- alt

Iteration - loop

Break – break

Parallel - par

Option - opt
Type Parameters Why is it useful?

opt [guard_condition] ▪The interactions contained within this

fragment will execute only if the guard

condition evaluates to true.

▪Similar to a simple if(..) statement in code

with no corresponding else.

Post comments if there were no errors.

Alternatives- alt
Type Parameters Why is it useful?

alt [guard_condition1]
...
[guard_condition2]
...
[else]

▪ Helps you specify that a set of interactions

will be executed only under certain

conditions.

▪ Similar to an if(..) else statement in code.
Depending on which guard condition

evaluates to true first, the corresponding

sub-collection of interactions will be

executed.

call accept() if balance > 0, call reject() otherwise.

Alternatives- alt example

Iteration - loop

Type Parameters Why is it useful?

loop min times,
max times,
[guard_condition]

▪Loops through the interactions contained within

the fragment a specified number of times until the

guard condition is evaluated to false.

▪Very similar to the Java and C# for(..) loop.

▪ Useful when you are trying execute a set of

interactions a specific number of times

▪Loop combined fragments have the properties Min

and Max, which indicate the minimum and

maximum number of times that the fragment can

be repeated. The default is no restriction.

Iteration – loop example

Break – break
Type Parameters Why is it useful?

break [guard_condition] ▪If this fragment is executed, the rest of the sequence is
abandoned.
▪You can use the guard to indicate the condition in
which the break will occur.
▪the break combined fragment is much like the break
keyword in a programming language like C++ or Java.
▪Breaks are most commonly used to model exception
handling.

Break enclosing loop if y>0.

Parallel - par
Type Parameters Why is it useful?

par None ▪Helps you to show parallel processing activities in a
sequence diagram .
▪The frame's content section can be broken into horizontal
operands separated by a dashed line. Each operand in the
frame represents a thread of execution done in parallel.

Search Google, Bing and Ask in parallel.

References

•Fowler, M. (2004). UML distilled: a brief guide to the standard

object modeling language. Addison-Wesley Professional.

•Miles, R and Hamilton, K. (2006) Learning UML 2.0.

Sebastopol: O'Reilly Media, Inc.

•Pender, T (2003). UML Bible. John Wiley & Sons, Inc., New

York, NY.

•Pilone, D., & Pitman, N. (2006). UML 2.0 in a nutshell. O’Reilly.

	الشريحة 1
	الشريحة 2: Something is Missing!
	الشريحة 3: Something is Missing!
	الشريحة 4: In today’s session you will learn ..
	الشريحة 5: Sequence Diagrams
	الشريحة 6: When to Use Sequence Diagrams?
	الشريحة 7: How it looks like!
	الشريحة 8: Common Graphical notations of Sequence Diagram
	الشريحة 9: Participants and Lifelines in a Sequence Diagram
	الشريحة 10: Participant Names
	الشريحة 11
	الشريحة 12: Activation Bars
	الشريحة 13: Activation Bars (Cont.)
	الشريحة 14: Messages in Sequence Diagrams An interaction in a sequence diagram occurs when one participant decides to send a message to another participant.
	الشريحة 15: Messages in Sequence Diagrams (Cont.)
	الشريحة 16: Message Signatures
	الشريحة 17: Message Signature – Examples
	الشريحة 18
	الشريحة 19: Message Arrows
	الشريحة 20: Message Arrows (Cont.)
	الشريحة 21
	الشريحة 22: Asynchronous Messages
	الشريحة 23: Asynchronous Messages– Example
	الشريحة 24: The Return Message
	الشريحة 25
	الشريحة 26: Participant Creation and Destruction Messages
	الشريحة 27: Participant Creation and Destruction Messages (Cont.)
	الشريحة 28: Participant Creation and Destruction Messages (Cont.)
	الشريحة 29: Time in Sequence Diagrams
	الشريحة 30: Time in Sequence Diagrams (Cont.)
	الشريحة 31: Exercise 1
	الشريحة 32: 1-Use case diagram:
	الشريحة 33: The Scenario
	الشريحة 34: 2- Sequence diagram
	الشريحة 35
	الشريحة 36
	الشريحة 37: The Scenario
	الشريحة 38
	الشريحة 39
	الشريحة 40: Semantics
	الشريحة 41: Managing Complex Interactions with Sequence Fragments
	الشريحة 42: When to use Sequence fragments ?
	الشريحة 43: What is a Sequence fragment ?
	الشريحة 44: What is a Sequence fragment ?
	الشريحة 45: How does it look like ?
	الشريحة 46: What is a Sequence fragment ?
	الشريحة 47: What is a Sequence fragment ?
	الشريحة 48: Types of Sequence Fragments
	الشريحة 49: Option - opt
	الشريحة 50: Alternatives- alt
	الشريحة 51: Alternatives- alt example
	الشريحة 52: Iteration - loop
	الشريحة 53: Iteration – loop example
	الشريحة 54: Break – break
	الشريحة 55: Parallel - par
	الشريحة 56: References

