

Machine Learning (ML) with Python

Artificial Neural Network (Deep Learning)

Dr. Aeshah Alsughayyir

Collage of Computer Science and Engineering

Taibah University

2021-2022

Dr. Aeshah Alsughayyir

Outline

- What is Deep Learning (DL) ?
- How do our brains work?
- Artificial Neural Network: *what is it*?
- How do ANNs work?
- Model of an artificial neuron
- NN Hidden Layers and Learning
- Learning by *trial* and *error*

- Main Issues in Designing NN
 - Activation Functions
 - Sigmoid
 - o *ReLU*
 - Error Estimation
 - Weights Adjusting
 - o Back Propagation
 - Number of Neurons
 - o Data Representation
 - Size of Training-set
- Learning Paradigms or Approaches (*recall*)
- Advantages / Disadvantages
- Example: Voice Recognition

What is Deep Learning (DL) ?

A machine learning subfield of learning **representations** of data. Exceptional effective at **learning patterns**. Deep learning algorithms attempt to learn (multiple levels of) representation by using a **hierarchy of multiple layers** If you provide the system **tons of information**, it begins to understand it and respond in useful ways.

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

How do our brains work?

- The Brain is a massively parallel information processing system.
- Our brains are a huge network of processing elements. A typical brain contains a network of 10 billion neurons.

An artificial neural network consists of a pool of simple processing units which communicate by sending signals to each other over a large number of **weighted** connections.

- Models of the brain and nervous system
- Highly parallel
 - Process information much more like the brain than a serial computer
- Learning
- Very simple principles
- Very complex behaviours
- Applications
 - As powerful problem solvers
 - As biological models

The "building blocks" of neural networks are the neurons.

• In technical systems, we also refer to them as **units** or **nodes**.

Basically, each neuron

- receives **input** from many other neurons.
- changes its internal state (activation) based on the current input.
- sends **one output signal** to many other neurons, possibly including its input neurons (**recurrent network**).

An artificial neuron is an imitation of a human neuron


```
A neuron looks like this...

f(x) = m x + b

could also be represented like

y = f(x)

f(x) = w1 * x1 + b

where w is the weight, and b is the bias
```

```
A general form to represent a neuron is:

y = f(x1 \cdot w1 + x2 \cdot w2 + ... + b)
```


The trick of machine learning is to find values of w and b coefficients (degree) that bring the best final results for the entire neuron network.

How do ANNs work?

Activation functions

How do we train?

4 + 2 = 6 neurons (not counting inputs) [3 x 4] + [4 x 2] = 20 weights 4 + 2 = 6 biases

26 learnable **parameters**

Model of an Artificial Neuron

Model of an Artificial Neuron

Dr. Aeshah Alsughayyir

Model of an Artificial Neuron

- The signal is not passed down to the next neuron directly.
- The output is a **function** of the input,
 that is affected by the weights, and
 the **activation functions**

Feed-forward nets

Dr. Aeshah Alsughayyir

NN hidden Layers and Learning

An ANN can:

- compute *any computable* function, by the appropriate selection of the network topology and weights values.
- learn from experience!
- Specifically, by trial-and-error

Weight settings determine the behavior of a network

How can we find the right weights?

Training the Network - Learning

- Backpropagation
 - Requires training set (input / output pairs)
 - Starts with small random weights
 - Error is used to adjust weights (supervised learning)
 - → Gradient descent on error landscape

For Example:

Learning by trial-and-error

Continuous process of

• Trial:

 Processing an input to produce an output (In terms of ANN: Compute the output function of a given input)

Evaluate:

- \circ Evaluating this output by comparing the actual output with the expected output.
- Adjust:
 - Adjust the weights.

Main issues in designing NN

- Initial weights
- Activation (Transfer) function (How the inputs and the weights are combined to produce output?)
- Error estimation
- Weights adjusting
- Number of neurons
- Data representation
- Size of training set

- Linear: The output is proportional to the total weighted input.
- Threshold: The output is set at one of two values, depending on whether the total weighted input is greater than or less than some threshold value.
- Non-linear: The output varies continuously but not linearly as the input changes.

Activation Functions

Non-linearities needed to learn complex (non-linear) representations of data, otherwise the NN would be just a linear function $y = f(x1 \cdot w1 + x2 \cdot w2 + ... + b)$

http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

More layers and neurons can approximate more complex functions

Activation: Sigmoid

- + Nice interpretation as the **firing rate** of a neuron
 - 0 = not firing at all
 - 1 = fully firing
- Sigmoid neurons stick or kill gradients, thus NN will hardly learn
 - when the neuron's activation are 0 or 1 (stick)
 - gradient at these regions almost zero
 - \circ almost no signal will flow to its weights
 - if initial weights are too large then most neurons would stick

Takes a real-valued number and "squashes" it into range between 0 and 1.

Activation: ReLU

Most Deep Networks use ReLU nowadays

- ① Trains much **faster**
- ① Less expensive operations
 - compared to sigmoid/tanh (exponentials etc.)
 - implemented by simply thresholding a matrix at zero
- (1) More **expressive**
- (:) Prevents the gradient vanishing problem

Takes a real-valued number and thresholds it at zero f(x) = max(0, x)

http://adilmoujahid.com/images/activation.png

Error Estimation

The root mean square error (RMSE)

is a frequently-used measure of the differences between values predicted by a model or an estimator and the values actually observed from the thing being modelled or estimated.

Weights Adjusting

After each iteration, weights should be adjusted to minimize the error.

- All possible weights
- Back propagation

Back Propagation

• Back-propagation is an example of supervised learning is used at each layer to minimize the error

between the layer's response and the actual data

- The error at each hidden layer is an average of the evaluated error
- Hidden layer networks are trained this way.
- The poplar algorithm used here is *gradient descent*.

Back Propagation

- N is a neuron.
- N_w is one of N's inputs weights
- N_{out} is N's output.
- $N_w = N_w \alpha \nabla N_w$
- $\nabla N_w = N_{out} * (1 N_{out}) * N_{ErrorFactor}$
- $N_{ErrorFactor} = N_{ExpectedOutput} N_{ActualOutput}$

This works only for the last layer, as we can know the actual output, and the expected output.

Number of neurons

- Many neurons:
 - Higher accuracy
 - Slower
 - Risk of over-fitting
 - Memorizing, rather than understanding
 - The network will be useless with new problems.
- Few neurons:
 - Lower accuracy
 - Inability to learn at all
- Optimal number!

Data Representation

- Usually input/output data needs pre-processing
- Pictures
 - Pixel intensity
- Text:
 - > A pattern
 - 0-0-1 for "Asma" 0-1-0 for "Abrar"
 - Encoding mechanism

Size of Training-set

• Overfitting can occur if a "good" training set is not chosen

- What constitutes a "good" training set?
 - Samples must represent the general population.
 - Samples must contain members of each class.
 - Samples in each class must contain a wide range of variations or noise effect.
- The size of the training set is <u>related</u> to the number of hidden neurons

Learning Paradigms (recall)

- <u>Supervised learning (our focus on this lecture)</u>
- Unsupervised learning
- Reinforcement learning

Advantages / Disadvantages

• Advantages

- Adapt to unknown situations
- Powerful, it can model complex functions.
- Ease of use, learns by example, and very little user domain-specific expertise needed

• Disadvantages

- Not exact
- Large complexity of the network structure

Example: Voice Recognition

- Task: Learn to differentiate between two different voices saying "Hello"
- Data
 - Sources
 Steve
 - > David
 - Format
 - Frequency distribution (60 bins)

Network architecture

Feed forward network

- > 60 input (one for each frequency bin)
- > 1 hidden with 6 neurons
- > 2 output (0-1 for "Steve", 1-0 for "David")

Presenting the data

34

Dr. Aeshah Alsughayyir

Presenting the data (untrained network)

35

Calculate error

Dr. Aeshah Alsughayyir

Backprop error and adjust weights

Dr. Aeshah Alsughayyir

Backprop error and adjust weights

- Repeat process (sweep) for all training pairs
 - Present data
 - Calculate error
 - Backpropagate error
 - Adjust weights
- Repeat process multiple times

Presenting the data (trained network)

Dr. Aeshah Alsughayyir

Results – Voice Recognition

Performance of trained network

- Recognition accuracy between known "Hello"s
 - <u>100%</u>
- Recognition accuracy between new "Hello"'s
 - <u>100%</u>

Any questions?