

Machine Learning (ML) with Python

Regularization

Dr. Aeshah Alsughayyir

Collage of Computer Science and Engineering

Taibah University

2021-2022

Outline:

• Regularization

o Overfitting

- How to Avoid Overfitting?
- o Understanding Regularization
- Regularization Techniques of Linear Model
 - Ridge Regression
 - o Lasso Regression
- o Impact of Regularization
- o Example (with Python)

Overfitting

- Overfitting of the model occurs when the model learns just 'too-well' on the train data.
- This would sound like an advantage, but it is not.
- When a model is overtrained on training data, it performs worst on the test data, or any new data.
- Technically, the model learns the details as well as the noise of the train data.

How to Avoid Overfitting?

- There are several ways of avoiding the overfitting of the model such as:
 - K-fold cross-validation
 - Resampling
 - *Reducing the number of features* (BUT this presents a disadvantage as removing features is sometimes equivalent to removing information)
 - Applying Regularization to the model

Regularization is a better technique than <u>Reducing the number of features</u> to overcome the overfitting problem as in <u>Regularization</u> we do not discard the features of the model.

Regularization works well when there are a lot of slightly useful features

Understanding Regularization

- Regularization is a technique that penalizes the coefficient.
- In an overfit model, the coefficients are generally inflated.
- Thus, Regularization adds penalties to the parameters and avoids them weigh heavily.
- The coefficients are added to the cost function of the linear equation.
- Thus, if the coefficient inflates, the cost function will increase. And Linear regression model will try to optimize the coefficient in order to minimize the cost function.
- Practically, you can check if the regression model is overfitting or not by RMSE (Root Mean Square Error).
- A good model has a similar RMSE for the <u>train</u> and <u>test</u> sets.
- If the difference is too large, we can say the model is overfitting to the training set.
- There are various techniques for adding penalties to the cost function

We will explore the most common Regularization Techniques of Linear Models

Regularization Techniques of Linear Model

Types of Regularization in ML

Elastic-Net Regression Regularization (combines both L1 and L2)

Regularization Techniques (Cont.)

1. Ridge Regression (L2 Regularization):

- Here, we're going to minimize the sum of squared errors and sum of the squared coefficients (β).
- The coefficients (β) with a large magnitude will generate the graph peak and deep slope, to suppress this we're using the lambda (λ)
- lambda (λ) is called a <u>Penalty Factor</u> and help us to get a smooth surface instead of an irregular-graph.
- Ridge Regression is used to push the coefficients(β) value nearing **zero** in terms of magnitude.
- This is L2 regularization, since it's adding a penalty-equivalent to the **Square-of-the Magnitude** of coefficients.

Regularization Techniques (Cont.)

2. Lasso Regression (L1 Regularization):

- LASSO stands for Least Absolute Shrinkage and Selection Operator.
- It is very similar to Ridge Regression, with little difference in Penalty Factor that coefficient is magnitude instead of squared.
- In Lasso there are possibilities of many coefficients becoming zero, so that corresponding attribute/features become zero and dropped from the list.
- This ultimately reduces the dimensions and supports for dimensionality reduction. So, it's deciding that those attributes (features) are not suitable for predicting target value.
- This is L1 regularization, because of adding the Absolute-Value as penalty-equivalent to the magnitude of coefficients.

Lasso Regression = Loss function + Regularized term

Transforming the Loss function into Lasso Regression $\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \longrightarrow \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |w_j|$ Loss functionLoss function + Regularized termDesigned by Author (Shanthababu)

Regularization Techniques (Cont.)

Characteristics of Lambda

Remember one thing that the Ridge never make coefficients into zero, Lasso will do. So, you can use Lasso for feature selection.

	$\lambda = 0$	$\lambda =>$ Minimal	$\lambda =>$ High
Lambda - Penalty Factor (λ)	 No impact on coefficients (β) and model gets Overfit Not suitable for Production 	 Generalized model. Acceptable accuracy Eligible for Test and Train Fit for Production. 	 Very high impact on coefficients (β). Leading to underfit. Ultimately not fit for Production.
			Biger Strain Str

Size of house

Impact of Regularization

Example (with Python)

```
In [23]: from sklearn import datasets
         from sklearn.linear model import Lasso
         from sklearn.model selection import train test split
          # Load the Boston Data Set
         bh = datasets.load boston()
         X = bh.data
         y = bh.target
         # Create training and test split
         X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
         # Create an instance of Lasso Regression implementation
         lasso = Lasso(alpha=1.0)
          # Fit the Lasso model
         lasso.fit(X_train, y_train)
          # Create the model score
         lasso.score(X_test, y_test), lasso.score(X_train, y_train)
Out[23]: (0.655906082915434, 0.6899591642958296)
In [13]: lasso.coef
Out[13]: array([-0.
                                        , -0.
                           , 0.
                                                      , 0.22497382, -0.
                                                                                ,
                 2.73102016, -0.
                                        , -0.
                                                     , -0.
                                                                   , -0.
                                                                                ,
                -1.24748188, 0.26711155, -3.75408325])
```

Summary

The End..

Any Questions?