
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g Chapter 1 & Chapter 2

Introduction &
Modeling principles

Course instructor : TA.Nada Alamoudi

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Objectives of the Course

• Appreciate the Fundamentals of Software
Engineering:

• Methodologies
• Process models
• Description and modeling techniques
• System analysis - Requirements engineering
• System design
• Implementation: Principles of system development

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Focus: Acquire Technical Knowledge

• Different methodologies (“philosophies”) to
model and develop software systems

• Different modeling notations
• Different modeling methods
• Different software lifecycle models (empirical

control models, defined control models)
• Different testing techniques (e.g. vertical

testing, horizontal testing)
• Rationale Management
• Release and Configuration Management

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Acquire Managerial Knowledge

• Learn the basics of software project
management

• Understand how to manage with a software
lifecycle

• Be able to capture software development
knowledge (Rationale Management)

• Manage change: Configuration Management
• Learn the basic methodologies

• Traditional software development
• Agile methods

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Techniques, Methodologies and Tools

• Techniques:
• Formal procedures for producing results

using some well-defined notation
• Methodologies:

• Collection of techniques applied across
software development and unified by a
philosophical approach

• Tools:
• Instruments or automated systems to

accomplish a technique
• CASE = Computer Aided Software

Engineering

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Challenge: Dealing with complexity and
change

Software Engineering is a collection of techniques,
methodologies and tools that help with the
production of

A high quality software system developed with a
given budget before a given deadline

while change occurs

Software Engineering: A Working
Definition

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Chapter 2,
Modeling principles

(Textbook Chapter 2)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Overview for the Lecture

• Three ways to deal with complexity
• Abstraction and Modeling
• Decomposition
• Hierarchy

• Introduction into the UML notation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

What is the problem with this Drawing?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Abstraction
• Abstraction allows us to ignore unessential details
• Two definitions for abstraction:

• Abstraction is a thought فكر process where ideas are
distanced from objects

• Abstraction as activity
• Abstraction is the resulting idea of a thought process

where an idea has been distanced from an object
• Abstraction as entity

• Ideas can be expressed by models

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Models
• A model is an abstraction of a

system
• A system that no longer exists
• An existing system
• A future system to be built.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

We use Models to describe Software
Systems

• Object model: What is the structure of
the system?

• Functional model: What are the
functions of the system?

• Dynamic model: How does the system
react to external events?

• System Model: Object model +
functional model + dynamic model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Other models used to describe
Software System Development
• Task Model:

• PERT Chart: What are the dependencies
between tasks?

• Schedule: How can this be done within the
time limit?

• Organization Chart: What are the roles in the
project?

• Issues Model:
• What are the open and closed issues?

• What blocks me from continuing?
• What constraints were imposed by the client?
• What resolutions were made?

• These lead to action items

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Issue-Modeling
Issue:

What is the
Center of the

Universe?

Proposal1:
The earth!

Proposal2:
The sun!

Pro:
Copernicus

says so.

Pro:
Aristotle
says so.

Pro:
Change will disturb

the people.

Con:
Jupiter’s moons rotate

around Jupiter, not
around Earth.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Issue-Modeling
Issue:

What is the
Center of the

Universe?

Proposal1:
The earth!

Proposal2:
The sun!

Pro:
Copernicus

says so.

Pro:
Aristotle
says so.

Pro:
Change will disturb

the people.

Con:
Jupiter’s moons rotate

around Jupiter, not
around Earth.

Resolution (1615):
The church

decides proposal 1
is right

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Issue-Modeling
Issue:

What is the
Center of the

Universe?

Proposal1:
The earth!

Proposal2:
The sun!

Pro:
Copernicus

says so.

Pro:
Aristotle
says so.

Pro:
Change will disturb

the people.

Con:
Jupiter’s moons rotate

around Jupiter, not
around Earth.

Resolution (1615):
The church

decides proposal 1
is right

Resolution (1998):
The church declares

proposal 1 was wrong

Proposal3:
Neither!

Pro:
Galaxies are moving away

From each other.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

2. Decomposition

Phone Number

Country-Code Area-Code Local-Prefix Internal-Nr

• Chunking:
• Group collection of objects to reduce complexity
• State-code, Area-code, Local Prefix, Internal-Nr

• Complex systems are hard to understand
• The 7 +- 2 phenomena

• Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

• My Phone Number: 498928918204

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Decomposition (cont’d)

• A technique used to master complexity (“divide
and conquer”).

• Two major types of decomposition
• Functional decomposition
• Object-oriented decomposition

• Functional decomposition
• The system is decomposed into modules
• Each module is a major function in the application domain
• Modules can be decomposed into smaller modules.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Decomposition (cont’d)

• Object-oriented decomposition
• The system is decomposed into classes (“objects”)
• Each class is a major entity in the application domain
• Classes can be decomposed into smaller classes

• Object-oriented vs. functional decomposition

Which decomposition is the right one?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Functional Decomposition
Top Level functions

Level 1 functions

Level 2 functions

Machine instructions

System
Function

Load R10 Add R1, R10

Read Input Transform Produce
Output

Transform Produce
OutputRead Input

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Functional Decomposition

• The functionality is spread all over the system
• Maintainer must understand the whole system to

make a single change to the system
• Consequence:

• Source code is hard to understand
• Source code is complex and impossible to maintain
• User interface is often awkward and unintuitive.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Class Identification

• Basic assumptions:
• We can find the classes for a new software

system: Greenfield Engineering
• We can identify the classes in an existing

system: Reengineering
• We can create a class-based interface to an

existing system: Interface Engineering.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

3. Hierarchy

• So far we got abstractions
• This leads us to classes and objects
• “Chunks”

• Another way to deal with complexity is to
provide relationships between these chunks

• One of the most important relationships is
hierarchy

• 2 special hierarchies
• "Part-of" hierarchy
• "Is-kind-of" hierarchy.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

I/O Devices CPU Memory

Part-of Hierarchy (Aggregation)
Computer

Cache ALU Program
Counter

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Is-Kind-of Hierarchy (Taxonomy)

Cell

Muscle Cell Blood Cell Nerve Cell

Striate Smooth Red White Cortical Pyramidal

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Where are we?

• Three ways to deal with complexity:
• Abstraction, Decomposition, Hierarchy

• Object-oriented decomposition is good
• Unfortunately, depending on the purpose of the

system, different objects can be found
• How can we do it right?

• Start with a description of the functionality of a system
• Then proceed to a description of its structure

• Ordering of development activities
• Software lifecycle

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Models must be falsifiable

• Karl Popper (“Objective Knowledge):
• There is no absolute truth when trying to understand reality
• One can only build theories, that are “true” until somebody

finds a counter example
• Falsification: The act of disproving a theory or hypothesis

• In software engineering any model is a theory:
• We build models and try to find counter examples by:

• Requirements validation, user interface testing, review of
the design, source code testing, system testing, etc.

• Testing: The act of disproving a model.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Concepts and Phenomena
• Phenomenon

• An object in the world of a domain as you perceive it
• Examples: This lecture at 9:30, my black watch

• Concept
• Describes the common properties of phenomena

• Example: All lectures on software engineering
• Example: All black watches

• A Concept is a 3-tuple:
• Name: The name distinguishes the concept from other

concepts
• Purpose: Properties that determine if a phenomenon is

a member of a concept
• Members: The set of phenomena which are part of the

concept.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Definition of Abstraction:
• Classification of phenomena into concepts

Definition of Modeling:
• Development of abstractions to answer specific questions

about a set of phenomena while ignoring irrelevant details.

MembersName

Watch

Purpose

A device that
measures time.

Concepts, Phenomena, Abstraction and
Modeling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Abstract Data Types & Classes
• Abstract data type

• A type whose implementation is
hidden from the rest of the system

• Class:
• An abstraction in the context of

object-oriented languages
• A class encapsulates properties and

behavior
• Example: Watch

Watch

time
date

SetDate(d)

CalculatorWatch

EnterCalcMode()
InputNumber(n)

calculatorState
Unlike abstract data types, subclasses
can be defined in terms of other
classes using inheritance

Properties

Behavior

Inheritance

Subclass
• Example: CalculatorWatch

Superclass

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Type and Instance
• Type:

• A concept in the context of programming languages
• Name: int
• Purpose: integral number
• Members: 0, -1, 1, 2, -2,…

• Instance:
• Member of a specific type

• The type of a variable represents all possible
instances of the variable

The following relationships are similar:
Type <–> Variable
Concept <–> Phenomenon
Class <-> Object

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Systems
• A system is an organized set of communicating parts

• Natural system: A system whose ultimate purpose is not
known

• Engineered system: A system which is designed and built by
engineers for a specific purpose

• The parts of the system can be considered as
systems again

• In this case we call them subsystems

Examples of engineered systems:
• Airplane, watch, GPS

Examples of subsystems:
• Jet engine, battery, satellite.

Examples of natural systems:
• Universe, earth, ocean

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Systems, Models and Views
• A model is an abstraction describing a

system or a subsystem

System: Airplane

Models:
Flight simulator
Scale model

Views:
Blueprint of the airplane components
Electrical wiring diagram, Fuel system
Sound wave created by airplane

• A view depicts selected aspects of a model

• A notation is a set of graphical or textual
rules for depicting models and views:

• formal notations, “napkin designs”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

System
View 1

Model 2
View 2

View 3

Model 1

Aircraft
Flightsimulator

Scale Model
Blueprints Electrical

Wiring

Fuel System

Views and models of a complex system usually overlap

(“Napkin” Notation)Systems, Models and Views

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Systems, Models and Views

System View
*

Model*

Depicted byDescribed by

Airplane:
System

Scale Model:Model Flight Simulator:Model

Fuel System:
View

Electrical Wiring:
View

Blueprints:
View

(UML Notation)
Class Diagram

Object Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Model-Driven Development

1. Build a platform-independent model of an
application functionality and behavior
a) Describe model in modeling notation (UML)
b) Convert model into platform-specific model

2. Generate executable from platform-specific model

Advantages:
• Code is generated from model (“mostly”)
• Portability and interoperability

• Model Driven Architecture effort:
• http://www.omg.org/mda/

• OMG: Object Management Group

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Reality: A stock exchange lists many companies. Each company
is identified by a ticker symbol

Analysis+ design result in analysis/design object model (Example:
UML Class Diagram):

StockExchange Company

tickerSymbolLists
**

Implementation results in source code (Java):

public class StockExchange {
public m_Company = new Vector();

};
public class Company {
public int m_tickerSymbol;
public Vector m_StockExchange = new Vector();

};

Model-driven Software Development

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Application vs Solution Domain

• Application Domain (Analysis):
• The environment in which the system is operating

• Solution Domain (Design, Implementation):
• The technologies used to build the system

• Both domains contain abstractions that we can
use for the construction of the system model.

