
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e E
ng

in
ee

ri
ng Chapter 3

Requirements Elicitation
(Book Chapter 4)

Course instructor : TA.Nada Alamoudi

2Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Requirements Process
:problem

statement

Requirements
elicitation

Analysis Model

Requirements
Specification

:dynamic model

:analysis object
model

Analysis

:nonfunctional
requirements

:functional
model

UML Activity Diagram

3Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Requirements Specification vs Analysis
Model
Both focus on the requirements from the user’s

view of the system
• The requirements specification uses natural

language (derived from the problem statement)
• The analysis model uses a formal or semi-formal

notation
• We use UML.

4Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Types of Requirements

• Functional requirements
• Describe the interactions between the system and its

environment independent from the implementation
“An operator must be able to define a new game. “

• Nonfunctional requirements
• Aspects not directly related to functional behavior.

“The response time must be less than 1 second”

• Constraints
• Imposed by the client or the environment

• “The implementation language must be Java “
• Called “Pseudo requirements” in the text book.

5Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Functional vs. Nonfunctional Requirements

Functional Requirements
• Describe user tasks

that the system needs
to support

• Phrased as actions
“Notify an interest group”
“Schedule tournament”

Nonfunctional Requirements
• Describe properties of the

system or the domain
• Phrased as constraints or

negative assertions
“All user inputs should be

acknowledged within 1
second”

“A system crash should not
result in data loss”.

6Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Types of Nonfunctional Requirements

• Usability
• Reliability

• Robustness
• Safety

• Performance
• Response time
• Scalability
• Throughput
• Availability

• Supportability
• Adaptability
• Maintainability

• Implementation
• Interface
• Operation
• Packaging
• Legal

• Licensing (GPL, LGPL)
• Certification
• Regulation

Quality requirements
Constraints or

Pseudo requirements

Some Quality Requirements Definitions
• Usability

• The ease with which actors can use a system to perform a function
• Usability is one of the most frequently misused terms (“The system is

easy to use”)
• Usability must be measurable, otherwise it is marketing

• Example: Specification of the number of steps to perform a
internet-based purchase with a web browser

• Robustness: The ability of a system to maintain a function
• even if the user enters a wrong input
• even if there are changes in the environment

• Example: The system can tolerate temperatures up to 90 C
• Availability: The ratio of the expected uptime of a system to

the aggregate of the expected up and down time
• Example: The system is down not more than 5 minutes per week.

8Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Nonfunctional Requirements: Examples

• “Spectators must be able to watch a match
without prior registration and without prior
knowledge of the match.”
ØUsability Requirement

• “The system must support 10 parallel
tournaments”
ØPerformance Requirement

• “The operator must be able to add new games
without modifications to the existing system.”
ØSupportability Requirement

9Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

What should not be in the Requirements?

• System structure, implementation technology
• Development methodology
• Development environment
• Implementation language
• Reusability

• It is desirable that none of these above are
constrained by the client.

10Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Requirements Validation
Requirements validation is a quality assurance

step, usually performed after requirements
elicitation or after analysis

• Correctness:
• The requirements represent the client’s view

• Completeness:
• All possible scenarios, in which the system can be used,

are described
• Consistency:

• There are no requirements that contradict each other.

11Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Requirements Validation (2)
• Clarity:

• Requirements can only be interpreted in one way

• Realism:
• Requirements can be implemented and delivered

• Traceability:
• Each system behavior can be traced to a set of

functional requirements

• Problems with requirements validation:
• Requirements change quickly during requirements

elicitation
• Inconsistencies are easily added with each change
• Tool support is needed!

12Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

We can specify Requirements for
“Requirements Management”
• Functional requirements:

• Store the requirements in a shared repository

• Provide multi-user access to the requirements
• Automatically create a specification document

from the requirements
• Allow change management of the requirements
• Provide traceability of the requirements throughout

the artifacts of the system.

13Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Tools for Requirements Management (2)

DOORS (Telelogic)
• Multi-platform requirements management tool, for

teams working in the same geographical location.
DOORS XT for distributed teams.

RequisitePro (IBM/Rational)

• Integration with MS Word
• Project-to-project comparisons via XML baselines

RD-Link (http://www.ring-zero.com)
• Provides traceability between RequisitePro & Telelogic

DOORS
Unicase (http://unicase.org)

• Research tool for the collaborative development of
system models

• Participants can be geographically distributed.

14Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Different Types of Requirements Elicitation

• Greenfield Engineering
• Development starts from scratch, no prior system

exists, requirements come from end users and clients
• Triggered by user needs

• Re-engineering
• Re-design and/or re-implementation of an existing

system using newer technology
• Triggered by technology enabler

• Interface Engineering
• Provision of existing services in a new environment
• Triggered by technology enabler or new market needs

15Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Prioritizing requirements

• High priority
• Addressed during analysis, design, and implementation
• A high-priority feature must be demonstrated

• Medium priority
• Addressed during analysis and design
• Usually demonstrated in the second iteration

• Low priority
• Addressed only during analysis
• Illustrates how the system is going to be used in the

future with not yet available technology

16Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Nonfunctional Requirements
(Questions to overcome “Writers block”)

User interface and human factors
• What type of user will be using the system?
• Will more than one type of user be using the

system?
• What training will be required for each type of user?
• Is it important that the system is easy to learn?
• Should users be protected from making errors?
• What input/output devices are available

Documentation
• What kind of documentation is required?
• What audience is to be addressed by each

document?

17Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Nonfunctional Requirements (2)

Hardware considerations
• What hardware is the proposed system to be used on?
• What are the characteristics of the target hardware,

including memory size and auxiliary storage space?

Performance characteristics
• Are there speed, throughput, response time constraints

on the system?
• Are there size or capacity constraints on the data to be

processed by the system?

Error handling and extreme conditions
• How should the system respond to input errors?
• How should the system respond to extreme conditions?

18Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Nonfunctional Requirements (3)

System interfacing
• Is input coming from systems outside the proposed

system?
• Is output going to systems outside the proposed system?
• Are there restrictions on the format or medium that must

be used for input or output?

Quality issues
• What are the requirements for reliability?
• Must the system trap faults?
• What is the time for restarting the system after a failure?
• Is there an acceptable downtime per 24-hour period?
• Is it important that the system be portable?

19Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Nonfunctional Requirements (4)

System Modifications
• What parts of the system are likely to be modified?
• What sorts of modifications are expected?

Physical Environment
• Where will the target equipment operate?
• Is the target equipment in one or several locations?
• Will the environmental conditions be ordinary?

Security Issues
• Must access to data or the system be controlled?
• Is physical security an issue?

20Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Nonfunctional Requirements (5)

Resources and Management Issues
• How often will the system be backed up?
• Who will be responsible for the back up?
• Who is responsible for system installation?
• Who will be responsible for system maintenance?

