
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e E
ng

in
ee

ri
ng Chapter 5

Functional Modeling
(Textbook Chapter 4)

Course instructor : TA.Nada Alamoudi

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Outline

üScenarios (last lecture)
üFinding Scenarios
üIdentifying actors

ØUse Cases
• Finding Use Cases
• Flow of Events
• Use Case Associations
• Use Case Refinement

• Summary

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

UML Use Case Diagrams

Used during requirements elicitation and analysis to
represent external behavior (“visible from the
outside of the system”)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

ReportEmergency

Use Case Modeling

• A use case is a flow of events in the system, including
interaction with actors

• Each use case has a name
• Each use case has a termination condition
• Graphical notation: An oval with the name of the use case

Use Case Model: The set of all use cases specifying
the complete functionality of the system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Actors
• An actor is a model for an external

entity which interacts (communicates)
with the system:

• User
• External system (Another system)
• Physical environment (e.g. Weather)

• An actor has a unique name and an
optional description

• Examples:
• Passenger: A person in the train
• GPS satellite: An external system that

provides the system with GPS coordinates.

Passenger

Name

Optional
Description

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Use Case
• A use case represents a class of

functionality provided by the
system

• Use cases can be described
textually, with a focus on the
event flow between actor and
system

• The textual use case description
consists of 6 parts:
1. Unique name
2. Participating actors
3. Entry conditions
4. Exit conditions
5. Flow of events
6. Special requirements.

PurchaseTicket

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Textual Use Case
Description Example

1. Name: Purchase ticket

2. Participating actor:
Passenger

3. Entry condition:
• Passenger stands in front

of ticket distributor
• Passenger has sufficient

money to purchase ticket

4. Exit condition:
• Passenger has ticket

5. Flow of events:
1. Passenger selects the

number of zones to be
traveled

2. Ticket Distributor
displays the amount due

3. Passenger inserts
money, at least the
amount due

4. Ticket Distributor returns
change

5. Ticket Distributor issues
ticket

6. Special requirements:
None.

Passenger
PurchaseTicket

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Use Case Associations

• Dependencies between use cases are
represented with use case associations

• Associations are used to reduce complexity
• Decompose a long use case into shorter ones
• Separate alternate flows of events
• Refine abstract use cases

• Types of use case associations
• Extends
• Includes
• Generalization

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

The <<extends>> Relationship
• <<extends>> relationships

model exceptional or seldom
invoked cases

• The direction of an
<<extends>> relationship is to
the extended use case

• Use cases representing
exceptional flows can extend
more than one use case.

Passenger

PurchaseTicket

TimeOut

<<extends>>

NoChange

<<extends>>OutOfOrder

<<extends>>

Cancel

<<extends>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

<<extend>> Association for Use Cases
• Problem: The functionality in the original

problem statement needs to be extended.
• Solution: An extend association from use case A

to use case B
• Example: “ReportEmergency” is complete by

itself, but can be extended by use case “Help” for
a scenario in which the user requires help

ReportEmergency

FieldOfficer
Help

<<extend>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

The <<includes>> Relationship
• <<includes>> relationship

represents common
functionality needed in more
than one use case

• <<includes>> behavior is
factored out for reuse, not
because it is an exception

• The direction of a
<<includes>> relationship is
to the using use case (unlike
the direction of the
<<extends>> relationship).

Passenger

PurchaseSingleTicket

PurchaseMultiCard

<<includes>>

CollectMoney

<<includes>>

NoChange

<<extends>>

Cancel

<<extends>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

<<include>>: Functional Decomposition
• Problem:

• A function in the original problem statement is too
complex

• Solution:
• Describe the function as the aggregation of a set of

simpler functions. The associated use case is
decomposed into shorter use cases

ManageIncident

CreateIncident HandleIncident CloseIncident

<<include>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

<<include>>: Reuse of Existing Functionality
• Problem: There are overlaps among use cases.

How can we reuse flows of events instead of
duplicating them?

• Solution: The includes association from use case A
to use case B indicates that an instance of use
case A performs all the behavior described in use
case B (“A delegates to B”)

• Example: Use case “ViewMap” describes behavior
that can be used by use case “OpenIncident”
(“ViewMap” is factored out)

ViewMap
OpenIncident

AllocateResources

<<include>>

<<include>>

Base Use
Case

Supplier
Use Case

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

The Generalization Relationship
• Generalization between use cases is similar to generalization

between classes – child use case inherits properties and
behavior of the parent use case and may override the behavior
of the parent.

• Generalization is shown as a solid directed line with a large
hollow triangle arrowhead, directed from the more specific use
case to the general use case.

parent use case

child use case

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Generalization in Use Cases
• Problem: We want to factor out common (but not

identical) behavior.
• Solution: The child use cases inherit the behavior

and meaning of the parent use case and add or
override some behavior.

• Example: “ValidateUser” is responsible for verifying
the identity of the user. The customer might require
two realizations: “CheckPassword” and
“CheckFingerprint”

ValidateUser
Parent
Case

Child
Use Case

CheckPassword

CheckFingerprint

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Scenario example: Warehouse on Fire

• Bob, driving down main street in his patrol car notices
smoke coming out of a warehouse. His partner, Alice,
reports the emergency from her car.

• Alice enters the address of the building into her wearable
computer, a brief description of its location (i.e., north
west corner), and an emergency level.

• She confirms her input and waits for an acknowledgment.
• John, the dispatcher, is alerted to the emergency by a

beep of his workstation. He reviews the information
submitted by Alice and acknowledges the report. He
allocates a fire unit and sends the estimated arrival time
(ETA) to Alice.

• Alice received the acknowledgment and the ETA.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Observations about Warehouse on Fire
Scenario
• Concrete scenario

• Describes a single instance of reporting a fire
incident.

• Does not describe all possible situations in
which a fire can be reported.

• Participating actors
• Bob, Alice and John

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Use Case Model for Incident Management

ReportEmergency

FieldOfficer Dispatcher
OpenIncident

AllocateResources

<<initiates>>
<<initiates>>

<<initiates>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Use Case Example: ReportEmergency

• Use case name: ReportEmergency
• Participating Actors:

• Field Officer (Bob and Alice in the Scenario)
• Dispatcher (John in the Scenario)

• Exceptions:
• The FieldOfficer is notified immediately if the

connection between terminal and central is lost.
• The Dispatcher is notified immediately if the connection

between a FieldOfficer and central is lost.
• Flow of Events: on next slide.
• Special Requirements:

• The FieldOfficer’s report is acknowledged within 30
seconds. The selected response arrives no later than
30 seconds after it is sent by the Dispatcher.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Use Case Example: ReportEmergency
Flow of Events

1. The FieldOfficer activates the “Report Emergency” function
of her terminal. The System responses by presenting a form
to the officer.

2. The FieldOfficer fills the form, by selecting the emergency
level, type, location, and brief description of the situation. The
FieldOfficer also describes a response to the emergency
situation. Once the form is completed, the FieldOfficer
submits the form, and the Dispatcher is notified.

3. The Dispatcher creates an Incident in the database by
invoking the OpenIncident use case. He selects a response
and acknowledges the report.

4. The FieldOfficer receives the acknowledgment and the
selected response.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Order of steps when formulating use cases

• First step: Name the use case
• Use case name: ReportEmergency

• Second step: Find the actors
• Generalize the concrete names (“Bob”) to participating

actors (“Field officer”)
• Participating Actors:

• Field Officer (Bob and Alice in the Scenario)
• Dispatcher (John in the Scenario)

• Third step: Concentrate on the flow of events
• Use informal natural language

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Another Use Case Example

Actor Bank Customer
• Person who owns one or more Accounts in the

Bank.
Withdraw Money
• The Bank Customer specifies an Account and

provides credentials to the Bank proving that
s/he is authorized to access the Bank Account.

• The Bank Customer specifies the amount of
money s/he wishes to withdraw.

• The Bank checks if the amount is consistent with
the rules of the Bank and the state of the Bank
Customer’s account. If that is the case, the
Bank Customer receives the money in cash.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Use Case Attributes

Use Case Withdraw Money Using ATM

Initiatiating actor:
• Bank Customer

Preconditions:
• Bank Customer has opened a Bank Account with

the Bank and
• Bank Customer has received an ATM Card and PIN

Postconditions:
• Bank Customer has the requested cash or
• Bank Customer receives an explanation from the

ATM about why the cash could not be dispensed

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

7. The Bank Customer inputs an
amount.

3. The Bank Customer types in
PIN.

5. The Bank Customer selects an
account.

Use Case Flow of Events

1.The Bank Customer inputs the
card into the ATM.

8.The ATM outputs the money and a
receipt and stops the interaction.

4. If several accounts are recorded
on the card, the ATM offers a choice
of the account numbers for selection
by the Bank Customer

6.If only one account is recorded on
the card or after the selection, the
ATM requests the amount to be
withdrawn.

System steps

2.The ATM requests the input of
a four-digit PIN.

Actor steps

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Use Case Exceptions

Actor steps
1.The Bank Customer inputs

her card into the
ATM.[Invalid card]

3.The Bank Customer types
in PIN. [Invalid PIN]

5. The Bank Customer
selects an account .

7. The Bank Customer inputs
an amount. [Amount
over limit]

[Invalid card]
The ATM outputs the card and
stops the interaction.

[Invalid PIN]
The ATM announces the failure
and offers a 2nd try as well as
canceling the whole use case.
After 3 failures, it announces
the possible retention of the
card. After the 4th failure it
keeps the card and stops the
interaction.

[Amount over limit]
The ATM announces the failure
and the available limit and
offers a second try as well as
canceling the whole use case.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Guidelines for Formulation of Use Cases (1)

• Name
• Use a verb phrase to name the use case.
• The name should indicate what the user is trying to

accomplish.
• Examples:

• “Request Meeting”, “Schedule Meeting”, “Propose
Alternate Date”

• Length
• A use case description should not exceed 1-2 pages. If

longer, use include relationships.
• A use case should describe a complete set of

interactions.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Guidelines for Formulation of Use Cases (2)

Flow of events:
• Use the active voice. Steps should start either

with “The Actor” or “The System …”.
• The causal relationship between the steps

should be clear.
• All flow of events should be described (not only

the main flow of event).
• The boundaries of the system should be clear.

Components external to the system should be
described as such.

• Define important terms in the glossary.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

How to write a use case (Summary)
• Name of Use Case
• Actors

• Description of Actors involved in use case
• Entry condition

• “This use case starts when…”
• Flow of Events

• Free form, informal natural language
• Exit condition

• “This use cases terminates when…”
• Exceptions

• Describe what happens if things go wrong
• Special Requirements

• Nonfunctional Requirements, Constraints

