
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e E
ng

in
ee

ri
ng Chapter 7

Dynamic Modeling
Sequence Diagram

(Textbook Chapter 5)

Course instructor : TA.Nada Alamoudi

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Dynamic Modeling with UML

• Definition of a dynamic model:
• Describes the components of the system that have

interesting dynamic behavior.

• Two UML diagrams types for dynamic modeling:
• Interaction diagrams describe the dynamic behavior

between objects.
• State chart diagrams describe the dynamic behavior of a

single object.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

UML Interaction Diagrams

• Two types of interaction diagrams:
• Sequence Diagram:

• Describes the dynamic behavior of several objects
over time

• Good for real-time specifications
• Collaboration Diagram:

• Shows the temporal relationship among objects
• Position of objects is based on the position of the

classes in the UML class diagram.
• Does not show time.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

UML State Chart Diagram

• Two types of State Chart diagrams:

• State Chart Diagram:

• A state machine that describes the response of an

object of a given class to the receipt of outside

stimuli (Events).

• Activity Diagram:

• A special type of state chart diagram, where all

states are action states (Moore Automaton).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Dynamic Modeling

• Definition of a dynamic model:
• Describes the components of the system that have

interesting dynamic behavior
• The dynamic model is described with

• State diagrams: One state diagram for each class with
interesting dynamic behavior

• Classes without interesting dynamic behavior are
not modeled with state diagrams

• Sequence diagrams: For the interaction between
classes

• Purpose:
• Detect and supply operations for the object model.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

How do we detect Operations?

• We look for objects, who are interacting and
extract their “protocol”

• We look for objects, who have interesting
behavior on their own

• Good starting point: Flow of events in a use
case description

• From the flow of events we proceed to the
sequence diagram to find the participating
objects.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

What is an Event?

• Something that happens at a point in time
• An event sends information from one object to

another
• Events can have associations with each other:

• Causally related:
• An event happens always before another event
• An event happens always after another event

• Causally unrelated:
• Events that happen concurrently

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Sequence Diagram

• A sequence diagram is a graphical description of
the objects participating in a use case

• Heuristic for finding participating objects:
• A event always has a sender and a receiver
• Find them for each event => These are the objects

participating in the use case.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Sequence Diagram Properties

• UML sequence diagram represent behavior in
terms of interactions

• Useful to identify or find missing objects
• Time consuming to build, but worth the

investment
• Complement the class diagrams (which

represent structure).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Semantic

:C

/R:C

/R

an anonymous object from classe
C
an anonymous object from classe C

playing the role R

an anonymous object playing the role R

O/R:C
An object O from classe C
playing the role R

:PERSON

/Reader:PERSON

/Reader

Ali/Reader:PERSON

O1 AliObject O1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

General representation

• The object which begins the interaction takes place in the left

• Each object is represented by a rectangle and a vertical bar "life

line"

• The horizontal organization of objects has no particular

meaning:

• No consequence for semantics of the diagram.

O1: C1 O2 :C2

a message
Another
message

message3

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

General representation

• The order of sending messages is given by their position on the

lifelines of objects (on the vertical axis of the diagram):

• Time flows "from top to bottom" of this axis.

• The vertical dimension represents the flow of time.

• It can be graduated in order to express temporal constraints.

O1: C1 O2 :C2

a message
Another
message

message3
t1
t2

t1<t2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

q Example of an object that activates another:
ü The activity period of the object A overlaps that of B

General representation

• It is possible to represent explicitly the different periods
of activity of an object by means of a rectangular strip
superposed on the object life line.

• A period of activity/execution occurrence corresponds to
the time during which an object performs an action, either
directly or through another object.

An object

A B

message

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Activation and sending of messages

• The numbering of messages is optional. It is replaced by the
order of the messages (vertical line from top to bottom).

O1 O2

t1

t2

Message()

Operation(par)

t2 > t1

temps

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Activation and sending of messages

• A message may be reflexive:

Account

Check account
balance()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Messages for a collection (multi-object)

• To send a message to all the elements of a collection (list)

consists in sending a message to each of them.

: Sale Object 3: Item

message1

message2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

The life line of objects

• The object life line:
• is represented by a dotted line.
• Can begin and break off in a diagram of sequence if the object is created

and/or destroyed during the duration defined by the specified diagram.

An Object

create() Another object

X : end of lifeTime

« destroy »

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Temporal constraints

• Temporal constraints may be represented in the margin by
appointing the moment of messages transmission .

Object 1 Object 3Object 2

X

Y
{y-x < 2s}

message1

message2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Comprehensive example

• Sequence diagram related to the Use case: to move in
the elevator.

: Door: Elevator

Outside call() [elevatorPosition!=
floor of call]
moving()

opening()
opened

closure()

closedSpecify the
floor()

:user

Open()

Close()
[floor is specified]

moving()

The user
can take the
elevator

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Sequence Diagrams

• Used during analysis
• To refine use case

descriptions
• to find additional objects

(“participating objects”)
• Used during system design

• to refine subsystem interfaces
• Instances are represented

by rectangles. Actors by
sticky figures

• Lifelines are represented by
dashed lines

• Messages are represented by
arrows

• Activations are represented
by narrow rectangles.

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

TicketMachinePassenger

Focus on
Controlflow

zone2price
selectZone()
insertCoins()
pickupChange()
pickUpTicket()

TicketMachine

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Sequence Diagrams can also model the
Flow of Data

• The source of an arrow indicates the activation which sent
the message

• Horizontal dashed arrows indicate data flow, for example
return results from a message

Passenger

selectZone()

ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow
…continued on next slide...

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Sequence Diagrams: Iteration & Condition

• Iteration is denoted by a * preceding the message name
• Condition is denoted by boolean expression in [] before

the message name

Passenger ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice(owedAmount)

lookupCoin(coin)

price

[owedAmount<0] returnChange(-owedAmount)

Iteration

Condition

…continued on next slide...

…continued from previous slide...

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Creation and destruction

• Creation is denoted by a message arrow pointing to the object
• Destruction is denoted by an X mark at the end of the

destruction activation
• In garbage collection environments, destruction can be used to

denote the end of the useful life of an object.

Passenger ChangeProcessor

…continued from previous slide...

Ticket

createTicket(selection)

free()

Creation of Ticket

Destruction of Ticket

print()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

• Flow of events in “Get SeatPosition” use case :

1. Establish connection between smart card and onboard
computer

2. Establish connection between onboard computer and
sensor for seat

3. Get current seat position and store on smart card

• Where are the objects?

An Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Sequence Diagram for “Get SeatPosition”

Establish Connection

Accept Connection

Accept Connection

Get SeatPosition

“500,575,300”

Smart Card Onboard Computer Seat

Establish Connection
1. Establish
connection
between smart card
and onboard
computer

2. Establish
connection
between onboard
computer and seat
(actually seat
sensor)

3. Get current seat
position and store

on smart card.
time

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Heuristics for Sequence Diagrams

• Creation of objects:
• Create control objects at beginning of event flow
• The control objects create the boundary objects

• Access of objects:
• Entity objects can be accessed by control and
boundary objects
• Entity objects should not access boundary or
control objects.

• Layout:
1st column: Should be the actor of the use case
2nd column: Should be a boundary object
3rd column: Should be the control object that
manages the rest of the use case

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

What else can we get out of Sequence
Diagrams?
• Sequence diagrams are derived from use cases

• The structure of the sequence diagram helps us
to determine how decentralized the system is

• We distinguish two structures for sequence
diagrams

• Fork Diagrams and Stair Diagrams (Ivar Jacobsen)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Control
Object

Fork Diagram
• The dynamic behavior is placed in a single

object, usually a control object
• It knows all the other objects and often uses them for

direct questions and commands

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Stair Diagram

• The dynamic behavior is distributed. Each object
delegates responsibility to other objects

• Each object knows only a few of the other objects and
knows which objects can help with a specific behavior

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Fork or Stair?

• Object-oriented supporters claim that the stair
structure is better

• Modeling Advice:
• Choose the stair - a decentralized control structure - if

• The operations have a strong connection
• The operations will always be performed in the

same order
• Choose the fork - a centralized control structure - if

• The operations can change order
• New operations are expected to be added as a

result of new requirements.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Dynamic Modeling

• We distinguish between two types of operations:
• Activity: Operation that takes time to complete

• associated with states
• Action: Instantaneous operation

• associated with events
• A state chart diagram relates events and states

for one class
• An object model with several classes with

interesting behavior has a set of state diagrams

