Chapter 8 Dynamic Modeling Statechart and Activity

(Textbook Chapter 5)

Course instructor : TA.Nada Alamoudi

Dynamic Modeling with UML

- Two UML diagrams types for dynamic modeling:
 - Interaction diagrams describe the dynamic behavior between objects
 - State chart diagrams describe the dynamic behavior of a single object:
 - State Chart Diagram: A state machine that describes the response of an object of a given class to the receipt of outside stimuli (Events).
 - Activity Diagram: A special type of state chart diagram, where all states are action states (Moore Automaton).

Dynamic Modeling

- We distinguish between two types of operations:
 - Activity: Operation that takes time to complete
 - associated with states
 - Action: Instantaneous operation
 - associated with events
- A state chart diagram relates events and states for one class
- An object model with several classes with interesting behavior has *a set* of state diagrams

UML Statechart Diagram Notation

- Note:
 - Conditions are enclosed with brackets: []
 - Actions and activities are prefixed with a slash /

Example of a StateChart Diagram

State Chart Diagram vs Sequence Diagram

- State chart diagrams help to identify:
 - Changes to an individual object over time
- Sequence diagrams help to identify:
 - The temporal relationship between objects over time
 - Sequence of operations as a response to one ore more events.

Dynamic Modeling of User Interfaces

- Statechart diagrams can be used for the design of user interfaces
- States: Name of screens
- Actions or activities are shown as bullets under the screen name

Requirements Analysis Document Template

- 1. Introduction
- 2. Current system
- 3. Proposed system
 - 3.1 Overview
 - 3.2 Functional requirements
 - 3.3 Nonfunctional requirements
 - 3.4 Constraints ("Pseudo requirements")
- → 3.5 System models
 - 3.5.1 Scenarios
 - 3.5.2 Use case model
 - 3.5.3 Object model
 - 3.5.3.1 Data dictionary
 - 3.5.3.2 Class diagrams
 - 3.5.4 Dynamic models
 - 3.5.5 User interfae
 - 4. Glossary

Activity Diagrams

- An activity diagram is a special case of a statechart diagram
- The states are activities ("functions")
- An activity diagram is useful to depict the workflow in a system

Activity Diagrams allow to model Decisions

Activity Diagrams can model Concurrency

- Synchronization of multiple activities
- Splitting the flow of control into multiple threads

Activity Diagrams: Grouping of Activities

 Activities may be grouped into swimlanes to denote the object or subsystem that implements the activities.

Activity Diagram vs. Statechart Diagram

Statechart Diagram for Incident Focus on the set of attributes of a single abstraction (object, system)

Activity Diagram for Incident

(Focus on dataflow in a system)

Model Validation and Verification

- Verification is an equivalence check between the transformation of two models
- Validation is the comparison of the model with reality
 - Validation is a critical step in the development process: Requirements should be validated with the client and the user.
 - Techniques: Formal and informal reviews (Meetings, requirements review)
- Requirements validation involves several checks
 - Correctness, Completeness, Ambiguity, Realistism

Checklist for a Requirements Review

- Is the model correct?
 - A model is correct if it represents the client's view of the the system
- Is the model complete?
 - Every scenario is described
- Is the model consistent?
 - The model does not have components that contradict each other
- Is the model unambiguous?
 - The model describes one system, not many
- Is the model realistic?
 - The model can be implemented