
U
sin

g 
U

M
L,

 P
at

te
rn

s, 
an

d 
Ja

va
O

bj
ec

t-O
ri

en
te

d 
So

ftw
ar

e E
ng

in
ee

ri
ng Chapter 8

Dynamic Modeling
Statechart and Activity

(Textbook Chapter 5)

Course instructor : TA.Nada Alamoudi



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 2

Dynamic Modeling with UML

• Two UML diagrams types for dynamic modeling:

• Interaction diagrams describe the dynamic behavior between

objects

• State chart diagrams describe the dynamic behavior of a 

single object:

• State Chart Diagram: A state machine that describes the 

response of an object of a given class to the receipt of 

outside stimuli (Events). 

• Activity Diagram: A special  type of state chart diagram, 

where all states are action states (Moore Automaton).



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 3

Dynamic Modeling

• We distinguish between two types of operations:
• Activity: Operation that takes time to complete

• associated with states
• Action: Instantaneous operation 

• associated with events

• A state chart diagram relates events and states 
for one class

• An  object model with several classes with 
interesting behavior has a set of state diagrams



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 4

UML Statechart Diagram Notation

State1 Event(attr) [condition]/action

entry /action
exit/action

• Note:
• Conditions are enclosed with brackets: []
• Actions and activities are prefixed with a slash /

do/Activity

State2

Event with parameters attr

Guard
condition

Action Name of
State

Actions and Activities in State



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 5

Example of a StateChart Diagram

available unavailable
Stock output [AvailableQty<MinQty]Stock input

Stock output
[AvailableQty>MinQty]

Stock input 
[AvailableQty>MinQty]

Stock input 
[AvailableQty<MinQty]



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 6

State Chart Diagram vs Sequence Diagram

• State chart diagrams help to identify:
• Changes to an individual object over time

• Sequence diagrams help to identify:
• The temporal relationship between objects over time
• Sequence of operations as a response to one ore more 

events.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 7

Dynamic Modeling of User Interfaces

• Statechart diagrams can be used for the design 
of user interfaces

• States: Name of screens
• Actions or activities are shown as bullets under 

the screen name



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 8

Requirements Analysis Document Template
1. Introduction
2. Current system
3. Proposed system

3.1 Overview
3.2 Functional requirements
3.3 Nonfunctional requirements
3.4 Constraints (“Pseudo requirements”)  
3.5 System models

3.5.1 Scenarios
3.5.2 Use case model
3.5.3 Object model

3.5.3.1 Data dictionary
3.5.3.2 Class diagrams

3.5.4 Dynamic models
3.5.5 User interfae

4. Glossary



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 9

Activity Diagrams

• An activity diagram is a special case of a 
statechart diagram 

• The states are activities (“functions”) 
• An activity diagram is useful to depict the 

workflow in a system

Handle
Incident

Document
Incident

Archive
Incident



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 10

Activity Diagrams allow to model Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

Decision



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 11

Activity Diagrams can model Concurrency

• Synchronization of multiple activities 
• Splitting the flow of control into multiple threads

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

SynchronizationSplitting



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 12

Activity Diagrams: Grouping of Activities

• Activities may be grouped into swimlanes to 
denote the object or subsystem that implements 
the activities.

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Dispatcher

FieldOfficer



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 13

Activity Diagram vs. Statechart Diagram

Handle
Incident

Document
Incident

Archive
Incident

Active Inactive Closed Archived
Incident-
Handled

Incident-
Documented

Incident-
Archived

Statechart Diagram for Incident
Focus on the set of attributes of a single abstraction (object, system)

Activity Diagram for Incident 
(Focus on dataflow in a system)

Triggerless
transition

Completion of activity 
causes state transition

Event causes
state transition



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 14

Model Validation and Verification

• Verification is an equivalence check between the 
transformation of two models

• Validation is the comparison of the model with 
reality
• Validation is a critical step in the development process: 

Requirements should be validated with the client and the 
user. 

• Techniques: Formal and informal reviews (Meetings, 
requirements review)

• Requirements validation involves several checks
• Correctness, Completeness, Ambiguity, Realistism



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 15

Checklist for a Requirements Review

• Is the model correct?  
• A model is correct if it represents the client’s view of 

the the system
• Is the model complete?

• Every scenario is described
• Is the model consistent?

• The model does not have components that contradict 
each other

• Is the model unambiguous?
• The model describes one system, not many

• Is the model realistic?
• The model can be implemented


