
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e E
ng

in
ee

ri
ng

Chapter 9:
Reuse and Patterns

(Textbook Chapter 8)

Course instructor : TA.Nada Alamoudi

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Object Design

• Purpose of object design:
• Prepare for the implementation of the system model

based on design decisions
• Transform the system model (optimize it)

• Investigate alternative ways to implement the
system model

• Use design goals: minimize execution time, memory and
other measures of cost.

• Object design serves as the basis of
implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Design means “Closing the Gap”

Solution objects

System Model

Application objects

Custom objects

System design gap

Object
design gap

Requirements gap

Problem

Machine

Develop-
ment
Gap

“Higher level Virtual
Machine”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Object Design consists of 4 Activities

1. Reuse: Identification of existing solutions
• Use of inheritance
• Off-the-shelf components and additional solution objects
• Design patterns

2. Interface specification
• Describes precisely each class interface

3. Object model restructuring
• Transforms the object design model to improve its

understandability and extensibility

4. Object model optimization
• Transforms the object design model to address

performance criteria such as response time or memory
utilization.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Adapter Pattern

• Adapter Pattern: Connects incompatible
components.

• It converts the interface of one component into
another interface expected by the other (calling)
component

• Used to provide a new interface to existing legacy
components (Interface engineering, reengineering)

• Also known as a wrapper.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Adapter Pattern

ClientInterface

Request()

LegacyClass

ExistingRequest()

adaptee

Adapter

Request()

Client

Old System
(“Legacy System”)

New System

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Modeling of the Real World

• Modeling of the real world leads to a system
that reflects today’s realities but not necessarily
tomorrow’s.

• There is a need for reusable and flexible designs

• Design knowledge such as the adapter pattern
complements application domain knowledge and
solution domain knowledge.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Customization: Build Custom Objects

• Problem: Close the object design gap
• Develop new functionality

• Main goal:
• Reuse knowledge from previous experience
• Reuse functionality already available

• Composition (also called Black Box Reuse)
• New functionality is obtained by aggregation
• The new object with more functionality is an

aggregation of existing objects

• Inheritance (also called White-box Reuse)
• New functionality is obtained by inheritance

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

White Box and Black Box Reuse

• White box reuse
• Access to the development products (models, system

design, object design, source code) must be available

• Black box reuse
• Access to models and designs is not available, or

models do not exist
• Worst case: Only executables (binary code) are

available
• Better case: A specification of the system interface

is available.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Why Inheritance?

1. Organization (during analysis):
• Inheritance helps us with the construction of

taxonomies to deal with the application domain
• when talking the customer and application domain

experts we usually find already existing
taxonomies

2. Reuse (during object design):
• Inheritance helps us to reuse models and code to deal

with the solution domain
• when talking to developers

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

The use of Inheritance

• Inheritance is used to achieve two different goals
• Description of Taxonomies
• Interface Specification

• Description of Taxonomies
• Used during requirements analysis
• Activity: identify application domain objects that are

hierarchically related
• Goal: make the analysis model more understandable

• Interface Specification
• Used during object design
• Activity: identify the signatures of all identified objects
• Goal: increase reusability, enhance modifiability and

extensibility

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Example of Inheritance
Superclass:

drive()
brake()
accelerate()

Car

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

LuxuryCar
Subclass:
public class LuxuryCar extends Car
{

public void playMusic() {…}
public void ejectCD() {…}
public void resumeMusic() {…}
public void pauseMusic() {…}

}

public class Car {
public void drive() {…}
public void brake() {…}
public void accelerate() {…}

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Inheritance comes in many Flavors

Inheritance is used in four ways:

• Specialization
• Generalization
• Specification Inheritance
• Implementation Inheritance.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Discovering Inheritance

• To “discover“ inheritance associations, we can
proceed in two ways, which we call
specialization and generalization

• Generalization: the discovery of an inheritance
relationship between two classes, where the sub
class is discovered first.

• Specialization: the discovery of an inheritance
relationship between two classes, where the
super class is discovered first.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Which Taxonomy is correct?

fly()

Airplane

drive()

Car

drive()

Car

fly()

Airplane

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Implementation Inheritance and
Specification Inheritance
• Implementation inheritance

• Also called class inheritance
• Goal:

• Extend an applications’ functionality by reusing
functionality from the super class

• Inherit from an existing class with some or all
operations already implemented

• Specification Inheritance
• Also called subtyping
• Goal:

• Inherit from a specification
• The specification is an abstract class with all

operations specified, but not yet implemented.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Implementation Inheritance vs.
Specification Inheritance

• Implementation Inheritance: The combination of
inheritance and implementation

• The Interface of the superclass is completely inherited
• Implementations of methods in the superclass

("Reference implementations") are inherited by any
subclass

• Specification Inheritance: The combination of
inheritance and specification

• The Interface of the superclass is completely inherited
• Implementations of the superclass (if there are any)

are not inherited.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Delegation instead of Implementation
Inheritance
• Inheritance: Extending a Base class by a new

operation or overwriting an operation.
• Delegation: Catching an operation and sending it

to another object.
• Which of the following models is better?

+Add()
+Remove()

List

Stack

+Push()
+Pop()
+Top()

+Push()
+Pop()
+Top()

Stack

Add()
Remove()

List

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

delegates to Client Receiver Delegatecalls

Delegation

• Delegation is a way of making composition as
powerful for reuse as inheritance

• In delegation two objects are involved in handling
a request from a Client

•The Receiver object delegates operations to the
Delegate object
•The Receiver object makes sure, that the Client
does not misuse the Delegate object.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Comparison: Delegation vs Implementation
Inheritance

• Delegation
☺ Flexibility: Any object can be replaced at run time by

another one (as long as it has the same type)
☹ Inefficiency: Objects are encapsulated.

• Inheritance
☺ Straightforward to use
☺ Supported by many programming languages
☺ Easy to implement new functionality
☹ Inheritance exposes a subclass to the details of its

parent class
☹ Any change in the parent class implementation forces

the subclass to change (which requires recompilation of
both)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Abstract Methods and Abstract Classes

• Abstract method:
• A method with a signature but without an

implementation (also called abstract operation)
• Abstract class:

• A class which contains at least one abstract method is
called abstract class

• Interface: An abstract class which has only
abstract methods

• An interface is primarily used for the specification of
a system or subsystem. The implementation is
provided by a subclass or by other mechanisms.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Example of an Abstract Method

totalReceipts
collectMoney()
makeChange()
dispenseItem()

VendingMaschine

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()
dispenseItem()

CoffeeMachine

cansOfBeer
cansOfCola
chill()
dispenseItem()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseItem()

CandyMachine

dispenseItem()

dispenseItem() must be
implemented in each subclass.
We do this by specifying the
operation as abstract. Abstract
operations are written in UML
in italics.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Rewriteable Methods and Strict Inheritance

• Rewriteable Method: A method which allow a
reimplementation.

• In Java methods are rewriteable by default, i.e. there
is no special keyword.

• Strict inheritance
• The subclass can only add new methods to the

superclass, it cannot over write them
• If a method cannot be overwritten in a Java program,

it must be prefixed with the keyword final.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Strict Inheritance
Superclass:

drive()
brake()
accelerate()

Car

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

LuxuryCar
Subclass:
public class LuxuryCar extends Car
{

public void playMusic() {…}
public void ejectCD() {…}
public void resumeMusic() {…}
public void pauseMusic() {…}

}

public class Car {
public final void drive() {…}
public final void brake() {…}
public final void accelerate()

{…}
}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

UML Class Diagram

Device
- int serialnr

+void setSerialnr(int n)

Valve
Position s
+void on()

Device
- int serialnr

+void setSerialNr(int n)

Valve
-Position s
+ void on()

+ void setSerialNr()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Contraction

• Contraction: Implementations of methods in
the super class are overwritten with empty
bodies in the subclass to make the super class
operations “invisible“

• Contraction is a special type of inheritance
• It should be avoided at all costs, but is is used

often.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Contraction must be avoided by all Means

A contracted subclass delivers the desired
functionality expected by the client, but:

• The interface contains operations that make no sense
for this class

• What is the meaning of the operation brake() for a
BoomBox?

The subclass does not fit into the taxonomy
A BoomBox ist not a special form of Auto

• The subclass violates Liskov's Substitution
Principle:

• I cannot replace Auto with BoomBox to drive to work.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Revised Metamodel for Inheritance

Inheritance

Specification
Inheritance

Implementation
Inheritance

Inheritance
for ReuseTaxonomy

Inheritance
detected by

generalization

Inheritance
detected by

specialization

Analysis
activity

Object
Design

Strict
Inheritance Contraction

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Frameworks

• A framework is a reusable partial application
that can be specialized to produce custom
applications.

• The key benefits of frameworks are reusability
and extensibility:

• Reusability leverages of the application domain
knowledge and prior effort of experienced developers

• Extensibility is provided by hook methods, which are
overwritten by the application to extend the
framework.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Classification of Frameworks

• Frameworks can be classified by their position in
the software development process:

• Infrastructure frameworks
• Middleware frameworks

• Frameworks can also be classified by the
techniques used to extend them:

• Whitebox frameworks
• Blackbox frameworks

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Frameworks in the Development Process

• Infrastructure frameworks aim to simplify the
software development process

• Used internally, usually not delivered to a client.

• Middleware frameworks are used to integrate
existing distributed applications

• Examples: MFC, DCOM, Java RMI, WebObjects,
WebSphere, WebLogic Enterprise Application [BEA].

• Enterprise application frameworks are
application specific and focus on domains

• Example of application domains: telecommunications,
avionics, environmental modeling, manufacturing,
financial engineering, enterprise business activities.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

White-box and Black-box Frameworks

• White-box frameworks:
• Extensibility achieved through inheritance and dynamic

binding.
• Existing functionality is extended by subclassing

framework base classes and overriding specific
methods (so-called hook methods)

• Black-box frameworks:
• Extensibility achieved by defining interfaces for

components that can be plugged into the framework.
• Existing functionality is reused by defining components

that conform to a particular interface
• These components are integrated with the framework

via delegation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Class libraries vs. Frameworks

• Class Library:
• Provide a smaller scope of reuse
• Less domain specific
• Class libraries are passive; no constraint on the flow of

control

• Framework:
• Classes cooperate for a family of related applications.
• Frameworks are active; they affect the flow of control.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Components vs. Frameworks
• Components:

• Self-contained instances of classes
• Plugged together to form complete applications
• Can even be reused on the binary code level

• The advantage is that applications do not have to be
recompiled when components change

• Framework:
• Often used to develop components
• Components are often plugged into blackbox

frameworks.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Documenting Object Design: ODD
Conventions
• Each subsystem in a system provides a service

• Describes the set of operations provided by the
subsystem

• Specification of the service operations
• Signature: Name of operation, fully typed parameter

list and return type
• Abstract: Describes the operation
• Pre: Precondition for calling the operation
• Post: Postcondition describing important state after the

execution of the operation

• Use JavaDoc and Contracts for the specification
of service operations

• Contracts are covered in the next lecture.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Summary
• Object design closes the gap between the

requirements and the machine
• Object design adds details to the requirements

analysis and makes implementation decisions
• Object design activities include:

ü Identification of Reuse
ü Identification of Inheritance and Delegation

opportunities
ü Component selection
• Interface specification (Next lecture)
• Object model restructuring
• Object model optimization

• Object design is documented in the Object
Design Document (ODD).

Lectures on Mapping
Models to Code

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Reuse
• Main goal:

• Reuse knowledge from previous experience to current
problem

• Reuse functionality already available
• Composition (also called Black Box Reuse)

• New functionality is obtained by aggregation
• The new object with more functionality is an

aggregation of existing components
• Inheritance (also called White-box Reuse)

• New functionality is obtained by inheritance.
• Three ways to get new functionality:

• Implementation inheritance
• Interface inheritance
• Delegation

