
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
En

gi
ne

er
in

g Chapter 4:
Modeling with UML

 (Textbook Chapter 2)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Object-oriented Modeling

Application Domain
(Phenomena)

Solution Domain
(Phenomena)

System Model (Concepts) System Model (Concepts)

Aircraft TrafficController

FlightPlanAirport

MapDisplay

FlightPlanDatabase

Summary
Display

TrafficControl

TrafficControl
UML

Package

(Analysis) (Design)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

What is UML?
• UML (Unified Modeling Language)

• Nonproprietary standard for modeling software systems, OMG
• Convergence of notations used in object-oriented methods

• OMT (James Rumbaugh and collegues)
• Booch (Grady Booch)
• OOSE (Ivar Jacobson)

• Current Version: UML 2.2
• Information at the OMG portal http://www.uml.org/

• Commercial tools: Rational (IBM),Together (Borland), Visual
Architect (business processes, BCD)

• Open Source tools: ArgoUML, StarUML, Umbrello

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

UML: First Pass

• You can solve 80% of the modeling problems by
using 20 % UML

• We teach you those 20%

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

UML First Pass
• Use case diagrams

• Describe the functional behavior of the system as seen by the
user

• Class diagrams
• Describe the static structure of the system: Classes, attributes,

methods, relationships between classes

• Sequence diagrams
• Describe the dynamic behavior between objects of the system

• Statechart diagrams
• Describe the dynamic behavior of an individual (/group of)

object

• Activity diagrams
• Describe the dynamic behavior of a system, in particular the

workflow.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

UML Core Conventions

• All UML Diagrams denote graphs of nodes and
edges

• Nodes are entities and drawn as rectangles or ovals
• Rectangles denote classes or instances
• Ovals denote functions

• Names of Classes are not underlined
• SimpleWatch
• FireFighter

• Names of Instances are underlined
• myWatch:SimpleWatch
• joe:FireFighter

• An edge between two nodes denotes a
relationship between the corresponding entities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

UML Use Case Diagrams

An Actor represents a role, that
is, a type of user of the system

Passenger

PurchaseTicket

Used during requirements elicitation
and analysis to represent external
behavior (“visible from the outside of
the system”)

Use case model:
The set of all use cases that
completely describe the
functionality of the system +
Actors.

A use case represents a class of
functionality provided by the system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

UML first pass: Use case diagrams

Use case diagrams represent the functionalities of the system
from user’s point of view

Actor.

Use Case

System boundary

Classifier

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Class Diagrams

• Class diagrams represent the structure of the
system

• Used
• during requirements analysis to model application

domain concepts
• during system design to model subsystems
• during object design to specify the detailed behavior

and attributes of classes.

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

* *

Trip
zone:Zone

Price: Price

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

UML first pass: Class diagrams

Class
Association

Multiplicity

Class diagrams represent the structure of the system

2
1 1

1
1

1
1

2

SimpleWatch

Display Battery TimePushButton

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

UML first pass: Class diagrams

1
2

push()
release()

1
1

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay Battery
Load

1
2

1

Time
Now

1

Watch

Operations

state
PushButton

Attribute

Class diagrams represent the structure of the system

Class
Association

Multiplicity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Instances

• An instance represents a phenomenon
• The attributes may be represented with their values
• The name of an instance is underlined
• The name can contain only the class name of the instance (anonymous instance)

zone2price = {
{‘1’, 0.20},
{‘2’, 0.40},
{‘3’, 0.60}}

tarif2006:TarifSchedule
zone2price = {
{‘1’, 0.20},
{‘2’, 0.40},
{‘3’, 0.60}}

:TarifSchedule

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Actor vs Class vs Object

• Actor
• An entity outside the system to be modeled,

interacting with the system (“Passenger”)

• Class
• An abstraction modeling an entity in the application or

solution domain
• The class is part of the system model (“User”, “Ticket

distributor”, “Server”)

• Object
• A specific instance of a class (“joe, the passenger who

is purchasing a ticket from the ticket distributor”).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Message

UML first pass: Sequence diagram

:Time :Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system
as messages (“interactions”) between different objects

Actor

pressButton1()

Lifeline

blinkHours()

pressButton2() incrementMinutes()

:LCDDisplay

refresh()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

UML first pass: Statechart diagrams

State1 Event(attr) [condition]/action

entry /action
exit/action

• Note:
• Conditions are enclosed with brackets: []
• Actions and activities are prefixed with a slash /

do/Activity
State2

Event with parameters attr

Guard
condition

Action

Event

Name of
State

Actions and Activities in State

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

UML first pass: Statechart
diagrams

State

Initial state

Final state

Transition

Event

Represent behavior of a single object with interesting
dynamic behavior.

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed Increment
Minutes

Increment
Hours

Blink
Hours

Blink
Seconds

Blink
Minutes

Increment
Seconds

Stop
Blinking

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

State

• An abstraction of the attributes of a class
• State is the aggregation of several attributes of a class

• A state is an equivalence class of all those
attribute values and links that do no need to be
distinguished

• Example: State of a bank

• State has duration

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

State Chart Diagram vs Sequence
Diagram
• State chart diagrams help to identify:

• Changes to an individual object over time

• Sequence diagrams help to identify:
• The temporal relationship between objects over time
• Sequence of operations as a response to one or more

events.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Activity Diagrams
• An activity diagram is a special case of a state

chart diagram
• The states are activities (“functions”)
• An activity diagram is useful to depict the

workflow in a system

Handle
Incident

Document
Incident

Archive
Incident

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Activity Diagram vs. Statechart
Diagram

Handle
Incident

Document
Incident

Archive
Incident

Active Inactive Closed Archived
Incident-
Handled

Incident-
Documented Incident-

Archived

Statechart Diagram for Incident
Focus on the set of attributes of a single abstraction (object, system)

Activity Diagram for Incident
(Focus on dataflow in a system)

Triggerless
transitionCompletion of activity

causes state transition

Event causes
state transition

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Packages
• Packages help you to organize UML models to increase

their readability
• We can use the UML package mechanism to organize

classes into subsystems

• Any complex system can be decomposed into
subsystems, where each subsystem is modeled as a
package.

Account

CustomerBank

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Other UML Notations

UML provides many other notations
• We introduce them as we go along in the

lectures
• OCL: A language for constraining UML models.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

What should be done first? Coding or
Modeling?

• It depends….
• Forward Engineering

• Creation of code from a model
• Start with modeling
• Greenfield projects

• Reverse Engineering
• Creation of a model from existing code
• Interface or reengineering projects

• Roundtrip Engineering
• Move constantly between forward and reverse

engineering
• Reengineering projects
• Useful when requirements, technology and schedule

are changing frequently.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

UML Summary

• UML provides a wide variety of notations for
representing many aspects of software
development

• Powerful, but complex

• UML is a programming language
• Can be misused to generate unreadable models
• Can be misunderstood when using too many exotic

features

• We concentrated on a few notations:
• Functional model: Use case diagram
• Object model: class diagram
• Dynamic model: sequence diagrams, statechart and

activity diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Additional References
• Martin Fowler

• UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed., Addison-Wesley, 2003

• Grady Booch,James Rumbaugh,Ivar Jacobson
• The Unified Modeling Language User Guide, Addison

Wesley, 2nd edition, 2005

• Open Source UML tools
• http://java-source.net/open-source/uml-modeling

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

