
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e E
ng

in
ee

ri
ng Chapter 6

Object Modeling
(Textbook Chapter 5)

Course instructor : TA.Nada Alamoudi

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

From Use Cases to Objects
Level 1 Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

Level 2

Level 1

Level 2

Level 3 Level 3

Level 4 Level 4

Level 3

A B

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

From Use Cases to Objects: Why Functional
Decomposition is not Enough

Scenarios

Level 1 Use Cases

Level 2 Use Cases

Operations

Participating
Objects

Level 2

Level 1

Level 2

Level 3 Level 3

Level 4 Level 4

Level 3

A B

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Activities during Object Modeling
Main goal: Find the important abstractions
• Steps during object modeling

1. Class identification
• Based on the fundamental assumption that we can

find abstractions
2. Find the attributes
3. Find the methods
4. Find the associations between classes

• Order of steps
• Goal: get the desired abstractions
• Order of steps secondary, only a heuristic

• What happens if we find the wrong abstractions?
• We iterate and revise the model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Class Identification

Class identification is crucial to object-oriented
modeling

• Helps to identify the important entities of a system

• Basic assumptions:
1. We can find the classes for a new software system

(Forward Engineering)
2. We can identify the classes in an existing system

(Reverse Engineering)
• Why can we do this?

• Philosophy, science, experimental evidence.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Class Identification

• Approaches
• Application domain approach

• Ask application domain experts to identify relevant
abstractions

• Syntactic approach
• Start with use cases
• Analyze the text to identify the objects
• Extract participating objects from flow of events

• Design patterns approach
• Use reusable design patterns

• Component-based approach
• Identify existing solution classes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Class identification is a Hard Problem

• One problem: Definition of the system boundary:
• Which abstractions are outside, which abstractions are

inside the system boundary?
• Actors are outside the system
• Classes/Objects are inside the system.

• An other problem: Classes/Objects are not just
found by taking a picture of a scene or domain

• The application domain has to be analyzed
• Depending on the purpose of the system different objects

might be found
• How can we identify the purpose of a system?
• Scenarios and use cases => Functional model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

There are different types of Objects

• Entity Objects
• Represent the persistent information tracked by the

system (Application domain objects, also called
“Business objects”)

• Boundary Objects
• Represent the interaction between the user and the

system
• Control Objects

• Represent the control tasks performed by the system.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Example: 2BWatch Modeling

Year

Month

Day

ChangeDate
Button

LCDDisplay

Entity Objects Control Object Boundary Objects

To distinguish different object types
in a model we can use the
UML Stereotype mechanism

Naming Object Types in UML
• UML provides the stereotype mechanism to

introduce new types of modeling elements
• A stereotype is drawn as a name enclosed by angled double-

quotes (“guillemets”) (<<, >>) and placed before the name of a
UML element (class, method, attribute, ….)

• Notation: <<String>>Name
<<Entity>>

Year <<Control>>
ChangeDate

<<Boundary>>
Button

<<Entitity>>
Month

<<Entity>>
Day

<<Boundary>>
LCDDisplay

Entity Object Control Object Boundary Object

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

UML is an Extensible Language
• Stereotypes allow you to extend the vocabulary of the

UML so that you can create new model elements,
derived from existing ones

• Examples:
• Stereotypes can also be used to classify method behavior such

as <<constructor>>, <<getter>> or <<setter>>
• To indicate the interface of a subsystem or system, one can

use the stereotype <<interface>> (Lecture System Design)
• Stereotypes can be represented with icons and

graphics:
• This can increase the readability of UML diagrams.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Icons for Stereotypes

• One can use icons to identify a stereotype
• When the stereotype is applied to a UML model element, the

icon is displayed beside or above the name

Entity Object Control Object Boundary Object

Year ChangeDate Button

Actor

WatchUser

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Graphics for Stereotypes
• One can also use graphical symbols to identify a

stereotype
• When the stereotype is applied to a UML model element, the

graphic replaces the default graphic for the diagram element.
• Example: When modeling a network, define graphics for

representing classes of type Switch, Server, Router, Printer,etc.

Graphics for
Class of type

Router

Graphics for
Class of type

Switch
Graphics for
Server Class

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Pros and Cons of Stereotype Graphics

• Advantages:
• UML diagrams may be easier to understand if they contain

graphics and icons for stereotypes
• This can increase the readability of the diagram, especially

if the client is not trained in UML
• And they are still UML diagrams!

• Disadvantages:
• If developers are unfamiliar with the symbols being used, it can

become much harder to understand what is going on
• Additional symbols add to the burden of learning to read the

diagrams.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Object Types allow us to deal with Change

• Having three types of object leads to models
that are more resilient to change

• The interface of a system changes more likely than the
control

• The way the system is controlled changes more likely
than entities in the application domain

• Object types originated in Smalltalk:
• Model, View, Controller (MVC)

Model <-> Entity Object
View <-> Boundary Object

Controller <-> Control Object

• Next topic: Finding objects.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Finding Participating Objects in Use Cases

• Pick a use case and look at flow of events
• Do a textual analysis (noun-verb analysis)

• Nouns are candidates for objects/classes
• Verbs are candidates for operations
• This is also called Abbott’s Technique

• After objects/classes are found, identify their
types

• Identify real world entities that the system needs to
keep track of (FieldOfficer → Entity Object)

• Identify real world procedures that the system needs
to keep track of (EmergencyPlan → Control Object)

• Identify interface artifacts (PoliceStation → Boundary
Object).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Example for using the Technique

• The customer enters the store to buy a toy.
• It has to be a toy that his daughter likes and it
must cost less than 50 Euro.

• He tries a videogame, which uses a data glove and
a head-mounted display. He likes it.

• An assistant helps him.
• The suitability of the game depends on the age of
the child.

• His daughter is only 3 years old.
• The assistant recommends another type of toy,
namely the boardgame “Monopoly".

Flow of Events:

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Mapping parts of speech to model
components (Abbot’s Technique)

Part of speech

Proper noun

Improper noun

Doing verb

being verb

having verb

modal verb

adjective

transitive verb

intransitive verb

UML model component

object

class

operation

inheritance

aggregation

constraint

attribute

operation

Constraint, class,
association

Example

“Monopoly”

Toy

Buy, recommend

is-a

has an

must be

dangerous

enter

depends on

videogame

• The customer enters the store
to buy a toy. It has to be a
toy that his daughter likes
and it must cost less than
50 Euro. He tries a videogame,
which uses a data glove and a
head-mounted display. He likes
it.

Generating a Class Diagram from Flow of Events

An assistant helps him. The
suitability of the game depends
on the age of the child. His
daughter is only 3 years old.
The assistant recommends
another type of toy, namely a
boardgame. The customer buy the
game and leaves the store

Customer

?

enter()

toy

daughter

suitable

*

store

enter()

toy

buy()

Flow of events:

Toy

price
buy()
like()

boardgame

daughter
age

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Ways to find Objects
• Syntactical investigation with Abbot‘s technique:

• Flow of events in use cases
• Problem statement

• Use other knowledge sources:
• Application knowledge: End users and experts know

the abstractions of the application domain
• Solution knowledge: Abstractions in the solution

domain
• General world knowledge: Your generic knowledge and

intution

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Order of Activities for Object Identification

1. Formulate a few scenarios with help from an
end user or application domain expert

2. Extract the use cases from the scenarios, with
the help of an application domain expert

3. Then proceed in parallel with the following:
• Analyse the flow of events in each use case

using Abbot's textual analysis technique
• Generate the UML class diagram.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Steps in Generating Class Diagrams

1. Class identification (textual analysis, domain
expert)

2. Identification of attributes and operations
(sometimes before the classes are found!)

3. Identification of associations between classes
4. Identification of multiplicities
5. Identification of roles
6. Identification of inheritance

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Who uses Class Diagrams?

• Purpose of class diagrams
• The description of the static properties of a system

• The main users of class diagrams:
• The application domain expert

• uses class diagrams to model the application
domain (including taxonomies)

• during requirements elicitation and analysis
• The developer

• uses class diagrams during the development of a
system

• during analysis, system design, object design
and implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Who does not use Class Diagrams?

• The client and the end user are usually not
interested in class diagrams

• Clients focus more on project management issues
• End users are more interested in the functionality of

the system.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Pieces of an Object Model

• Classes and their instances (“objects”)
• Attributes
• Operations
• Associations between classes and objects

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Associations

• Types of Associations
• Canonical associations

• Part-of Hierarchy (Aggregation)
• Kind-of Hierarchy (Inheritance)

• Generic associations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Attributes

• Detection of attributes is application specific
• Attributes in one system can be classes in

another system
• Turning attributes to classes and vice versa

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Operations

• Source of operations
• Use cases in the functional model
• General world knowledge
• Generic operations: Get/Set
• Design Patterns
• Application domain specific operations
• Actions and activities in the dynamic model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Object vs Class

• Object (instance): Exactly one thing
• This lecture on object modeling

• A class describes a group of objects with similar
properties

• Game, Tournament, mechanic, car, database
• Object diagram: A graphical notation for

modeling objects, classes and their relationships
• Class diagram: Template for describing many instances

of data. Useful for taxonomies, patters, schemata...
• Instance diagram: A particular set of objects relating to

each other. Useful for discussing scenarios, test cases
and examples

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Developers have different Views on Class
Diagrams
• According to the development activity, a

developer plays different roles:
• Analyst
• System Designer
• Object Designer
• Implementor

• Each of these roles has a different view about
the class diagram (the object model).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

The View of the Analyst

• The analyst is interested
• in application classes: The associations between

classes are relationships between abstractions in the
application domain

• operations and attributes of the application classes
(difference to E/R models!)

• The analyst uses inheritance in the model to
reflect the taxonomies in the application domain

• Taxonomy: An is-a-hierarchy of abstractions in an
application domain

• The analyst is not interested
• in the exact signature of operations
• in solution domain classes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

The View of the Designer
• The designer focuses on the solution of the

problem, that is, the solution domain
• The associations between classes are now

references (pointers) between classes in the
application or solution domain

• An important design task is the specification of
interfaces:

• The designer describes the interface of classes and the
interface of subsystems

• Subsystems originate from modules (term often used
during analysis):

• Module: a collection of classes
• Subsystem: a collection of classes with an interface

• Subsystems are modeled in UML with a package.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Goals of the Designer

• The most important design goals for the
designer are design usability and design
reusability

• Design usability: the interfaces are usable from
as many classes as possible within in the
system

• Design reusability: The interfaces are designed
in a way, that they can also be reused by other
(future) software systems

=> Class libraries
=> Frameworks
=> Design patterns.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

The View of the Implementor

• Class implementor
• Must realize the interface of a class in a programming

language
• Interested in appropriate data structures (for the

attributes) and algorithms (for the operations)
• Class extender

• Interested in how to extend a class to solve a new
problem or to adapt to a change in the application
domain

• Class user
• The class user is interested in the signatures of the

class operations and conditions, under which they can
be invoked

• The class user is not interested in the implementation
of the class.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Why do we distinguish different Users of
Class Diagrams?
• Models often don‘t distinguish between

application classes and solution classes
• Reason: Modeling languages like UML allow the use of

both types of classes in the same model
• “address book“, “array"

• Preferred: No solution classes in the analysis model
• Many systems don‘t distinguish between the

specification and the implementation of a class
• Reason: Object-oriented programming languages allow

the simultaneous use of specification and
implementation of a class

• Preferred: We distinguish between analysis model and
object design model. The analysis design model does
not contain any implementation specification.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Analysis Model vs. Object Design model

• The analysis model is constructed during the
analysis phase

• Main stake holders: End user, customer, analyst
• The class diagrams contains only application domain

classes

• The object design model (sometimes also called
specification model) is created during the object
design phase

• Main stake holders: class specifiers, class
implementors, class users and class extenders

• The class diagrams contain application domain as well
as solution domain classes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Analysis Model vs Object Design Model (2)

• The analysis model is the basis for
communication between analysts, application
domain experts and end users.

• The object design model is the basis for
communication between designers and
implementors.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Class Diagrams

• Class diagrams represent the structure of the
system

• Used during:
• requirements analysis to model application domain

concepts
• system design to model subsystems
• object design to specify the detailed behavior and

attributes of classes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

1. Classes

• A class represents a concept
• A class encapsulates state (attributes) and behavior
(operations)

Zone2price:Table
getZones():Enumeration
getPrice(zone:Zone):Price

TarifSchedule

zone2price
getZones()
getPrice()

TarifSchedule

Name

Attributes

Operations

Signature

TarifSchedule

The class name is the only mandatory information

Each attribute has a type
Each operation has a signature

Type

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Instances

• An instance represents a phenomenon
• The attributes are represented with their values
• The name of an instance is underlined
• The name can contain only the class name of the instance

(anonymous instance)

zone2price = {
{‘1’, 0.20},
{‘2’, 0.40},
{‘3’, 0.60}}

tarif2006:TarifSchedule
zone2price = {
{‘1’, 0.20},
{‘2’, 0.40},
{‘3’, 0.60}}

:TarifSchedule

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Classes and Objects—another example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Actor vs Class vs Object

Actor
• An entity outside the system to be modeled, interacting

with the system (“Passenger”)
Class

• An abstraction modeling an entity in the application or
solution domain

• The class is part of the system model (“User”, “Ticket
distributor”, “Server”)

Object
• A specific instance of a class (“Joe, the passenger who

is purchasing a ticket from the ticket distributor”).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

2. Associations and links

• Associations are relationships between classes

• A link represents a connection between two
objects.

• For example, each FieldOfficer object also has a
list of EmergencyReports that has been written
by the FieldOfficer.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Associations

Associations denote relationships between classes

Price
Zone

Enumeration getZones()
Price getPrice(Zone)

TarifSchedule TripLeg
* *

The multiplicity of an association end denotes how many
objects the instance of a class can legitimately reference.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Multiplicity

• Each end of an association can be labeled by a
set of integers indicating the number of links
that can legitimately originate from an instance
of the class connected to the association end.

• This set of integers is called the multiplicity of
the association end

• The “many” multiplicity is shorthand for 0..n and
is shown as a star.

• An association end can have an arbitrary set of
integers as a multiplicity.

• In practice, most of the associations we
encounter belong to one of the following three
types.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Multiplicity: 1-to-1 and 1-to-many
Associations

1-to-1 association

1-to-many association

Polygon

draw()

Point

x: Integer

y: Integer

*

Country

name:String

City

name:String

11

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Multiplicity: Many-to-Many Associations

StockExchange

Company

tickerSymbol**

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Multiplicity—Another Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

From Problem Statement To Object Model

Class Diagram:

StockExchange Company

tickerSymbol
Lists

**

Problem Statement: A stock exchange lists many companies.
Each company is uniquely identified by a ticker symbol

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

From Problem Statement to Code

Problem Statement : A stock exchange lists many companies.
Each company is identified by a ticker symbol

Class Diagram:

private Vector m_Company = new Vector();

public int m_tickerSymbol;
private Vector m_StockExchange = new Vector();

public class StockExchange
{

};

public class Company
{

};

Java Code

StockExchange Company

tickerSymbolLists
**

Associations
are mapped to

Attributes!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Aggregation
• An aggregation is a special case of association denoting a

“consists-of” hierarchy
• The aggregate is the parent class,

the components are the children classes

Exhaust system

Muffler
diameter

Tailpipe
diameter

1 0..2

TicketMachine

ZoneButton
3

A solid diamond denotes composition: A strong form of
aggregation where the life time of the component instances
is controlled by the aggregate. That is, the parts don’t exist
on their won (“the whole controls/destroys the parts”)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

Aggregation—Another Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 54

Qualifiers

Qualification is a technique for reducing multiplicity by using
keys.

The relationship between Directory and File is called
a qualified association.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 55

Qualification: Another Example

*StockExchange
CompanyLists *tickerSymbol

1

StockExchange

Company

tickerSymbol
Lists **

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 56

Inheritance

• Inheritance is another special case of an
association denoting a “kind-of” hierarchy

• Inheritance simplifies the analysis model by
introducing a taxonomy

• The children classes inherit the attributes and
operations of the parent class.

Button

ZoneButtonCancelButton

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 57

Packages
• Packages help you to organize UML models to

increase their readability
• We can use the UML package mechanism to

organize classes into subsystems

• Any complex system can be decomposed into
subsystems, where each subsystem is modeled as
a package

Account

CustomerBank

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 58

Object Modeling in Practice

Class Identification: Name of Class, Attributes and Methods
Is Foo the right name?

Foo

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 59

Object Modeling in Practice: Brainstorming

Foo

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

This image cannot currently be displayed.

Account

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()Is Foo the right name?

“Dada”

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

This image cannot currently be
displayed.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 60

Object Modeling in Practice: More classes

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name
CustomerId

CustomerIdAccountIdBank

Name

1) Find New Classes
2) Review Names, Attributes and Methods

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 61

Object Modeling in Practice: Associations

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name
CustomerId

CustomerIdAccountIdAccountIdBank

Name

1) Find New Classes
2) Review Names, Attributes and Methods

3) Find Associations between Classes

owns

4) Label the generic associations

6) Review associations

*
2

*?
has

5) Determine the multiplicity of the assocations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 62

Practice Object Modeling: Find Taxonomies

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId

Customer

Name

CustomerId()

Has*
Bank

Name
*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 63

Practice Object Modeling: Simplify, Organize

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId
Show Taxonomies

separately

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 64

Practice Object Modeling: Simplify, Organize

Customer

Name

CustomerId()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId

Bank

Name Has**

Use the 7±2 heuristics
or better yet, 5±2!

