

 0Copyright © 2010, Elsevier Inc. All rights Reserved

Chapter 5

Shared Memory Programming
with OpenMP

An Introduction to Parallel Programming
Peter Pacheco

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap

● Writing programs that use OpenMP.
● Using OpenMP to parallelize many serial for loops

with only small changes to the source code.
● Task parallelism.
● Explicit thread synchronization.
● Standard problems in shared-memory programming.

#
C
h
a
p
t
e
r
S
u
b
ti
tl
e

 0

OpenMP

● An API for shared-memory parallel programming.
● MP = multiprocessing
● Designed for systems in which each thread or process

can potentially have access to all available memory.
● System is viewed as a collection of cores or CPU’s,

all of which have access to main memory.

Copyright © 2010, Elsevier Inc. All rights Reserved

مصمم للأنظمة التي يمكن أن يتمكن فيها لكل مؤشر ترابط أو عملية من الوصول إلى جميع الذاكرة المتاحة.

ينظر إلى النظام على أنه مجموعة من النوى أو وحدة المعالجة المركزية، وكلها لديها إمكانية الوصول إلى الذاكرة الرئيسية.

 0

A shared memory system

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Pragmas

● Special preprocessor instructions.
● Typically added to a system to allow behaviors that

aren’t part of the basic C specification.
● Compilers that don’t support the pragmas ignore

them.

Copyright © 2010, Elsevier Inc. All rights Reserved

#pragma

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

gcc −g −Wall −fopenmp −o omp_hello omp_hello . c

. / omp_hello 4
compiling

running with 4 threads

Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4 Hello from thread 1 of 4

Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4

Hello from thread 3 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4

possible
outcomes

cmd

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

OpenMp pragmas

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

A process forking and joining two threads

Copyright © 2010, Elsevier Inc. All rights Reserved

• Thread is short for thread of execution. The name is meant to
suggest a sequence of statements executed by a program.

• Threads are typically started or forked by a process, and they
share most of the resources of the process starts them.

• Each thread has its own stack and program counter.
• When a thread completes execution, it join the process that

started it.

 0

Clause

● Text that modifies a directive.
● The num_threads clause can be added to a parallel

directive.
● It allows the programmer to specify the number of

threads that should execute the following block.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Of note…

● There may be system-defined limitations on the
number of threads that a program can start.

● The OpenMP standard doesn’t guarantee that this will
actually start thread_count threads.

● Most current systems can start hundreds or even
thousands of threads.

● Unless we’re trying to start a lot of threads, we will
almost always get the desired number of threads.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Some terminology

● In OpenMP parlance the collection of threads executing
the parallel block —

● The original thread and the new threads — is called a
team

● The original thread is called the master
● The additional threads are called slaves.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

In case the compiler doesn’t support
OpenMP

Copyright © 2010, Elsevier Inc. All rights Reserved

include <omp.h>

#ifdef _OPENMP
include <omp.h>
#endif

OpenMP preprocessor
macro

 0

In case the compiler doesn’t support
OpenMP

Copyright © 2010, Elsevier Inc. All rights Reserved

ifdef _OPENMP
 int my_rank = omp_get_thread_num ();
 int thread_count = omp_get_num_threads ();
e l s e
 int my_rank = 0;
 int thread_count = 1;
endif

 0

THE TRAPEZOIDAL RULE

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

The trapezoidal rule

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Serial algorithm

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

A First OpenMP Version

1) We identified two types of tasks:
a) computation of the areas of individual trapezoids,

and
b) adding the areas of trapezoids.

2) There is no communication among the tasks in the
first collection, but each task in the first collection
communicates with task 1b.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

A First OpenMP Version
3) We assumed that there would be many more

trapezoids than cores.
● So we aggregated tasks by assigning a contiguous

block of trapezoids to each thread (and a single thread
to each core).

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Assignment of trapezoids to threads

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

Unpredictable results when two (or more)
threads attempt to simultaneously execute:

 global_result += my_result ;

 0

Mutual exclusion

Copyright © 2010, Elsevier Inc. All rights Reserved

pragma omp critical
 global_result += my_result ;

only one thread can execute
the following structured block at a time

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

3- The left and right endpoints of its interval.

4- Its contribution to
global results

5- Using the critical
directive.

 0

SCOPE OF VARIABLES

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Scope

● In serial programming, the scope of a variable
consists of those parts of a program in which the
variable can be used.

● In OpenMP, the scope of a variable refers to the set

of threads that can access the variable in a parallel
block.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Scope in OpenMP

● A variable that can be accessed by all the threads in
the team has shared scope.

● A variable that can only be accessed by a single

thread has private scope.

● The default scope for variables
declared before a parallel block
is shared.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

THE REDUCTION CLAUSE

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

We need this more complex version to add each
thread’s local calculation to get global_result.

Although we’d prefer this.

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

If we use this, there’s no critical section!

If we fix it like this…

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

We can avoid this problem by declaring a private variable
inside the parallel block and moving
the critical section after the function call.

 0

Reduction operators

● A reduction operator is a binary operation (such as
addition or multiplication).

● A reduction is a computation that repeatedly applies

the same reduction operator to a sequence of operands
in order to get a single result.

● All of the intermediate results of the operation should

be stored in the same variable: the reduction variable.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

A reduction clause can be added to a parallel directive.

+, *, -, &, |, ˆ, &&, ||

Reduction operators

Note: Recall that C preprocessor directives are, by default, only one line long,
so we need to “escape” the newline character by putting a backslash “\”
immediately before it.

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

The Reduction Clause

• Effectively, OpenMP creates a private variable for each
thread, and the run-time system stores each thread’s result
in this private variable.

• OpenMP also creates a critical section and the values stored
in the private variables are added in this critical section.

• Thus, the calls to Local_trap can take place in parallel.

 0

THE “PARALLEL FOR”
DIRECTIVE

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Parallel for

● Forks a team of threads to execute the following
structured block.

● However, the structured block following the parallel
for directive must be a for loop.

● Furthermore, with the parallel for directive the system
parallelizes the for loop by dividing the iterations of
the loop among the threads.

● Unlike parallel directive, in parallel for, the default
partitioning (the iterations among the threads) is up
to the system.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Legal forms for parallelizable for
statements

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Caveats

● The variable index must have integer or
pointer type (e.g., it can’t be a float).

● The expressions start, end, and incr must have
a compatible type.

● For example, if index is a pointer, then incr must
have integer type.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Caveats

● The expressions start, end, and incr must not
change during execution of the loop.

● During execution of the loop, the variable
index can only be modified by the “increment
expression” in the for statement.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Data dependencies

Copyright © 2010, Elsevier Inc. All rights Reserved

1 1 2 3 5 8 13 21 34 55

1 1 2 3 5 8 0 0 0 0this is correct

but sometimes
we get this

fibo[0] = fibo[1] = 1;
for (i = 2; i < n; i++)
 fibo[i] = fibo[i – 1] + fibo[i – 2];

 fibo[0] = fibo[1] = 1;
pragma omp parallel for num_threads(2)
 for (i = 2; i < n; i++)
 fibo[i] = fibo[i – 1] + fibo[i – 2];

note 2 threads

 0

What happened?

1. OpenMP compilers don’t check
for dependences among iterations
in a loop that’s being parallelized
with a parallel for directive.

2. A loop in which the results of

one or more iterations depend on
other iterations cannot, in general,
be correctly parallelized by
OpenMP.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Estimating π

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

OpenMP solution #1

Copyright © 2010, Elsevier Inc. All rights Reserved

loop dependency

 0

OpenMP solution #2

Copyright © 2010, Elsevier Inc. All rights Reserved

Insures factor has
private scope.

● The private clause specifies that for each variable listed inside the parentheses,
a private copy is to be created for each thread.

● In our example, each of the thread_count threads will have its own copy of the
variable factor

 0

The default clause

● Lets the programmer specify the scope of each
variable in a block.

● With this clause the compiler will require that we
specify the scope of each variable we use in the block
and that has been declared outside the block.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

The default clause

Copyright © 2010, Elsevier Inc. All rights Reserved

• In this example, we use four variables in the for loop.
• With the default clause, we need to specify the scope of each:
• Sum is a reduction variable (which has properties of both private and shared scope)

 0

SCHEDULING LOOPS

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

We want to parallelize
this loop.

Assignment of work
using cyclic partitioning.

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

Our definition of function f.

 0

Results

● f(i) calls the sin function i times.
● Assume the time to execute f(2i) requires

approximately twice as much time as the time to
execute f(i).

● n = 10,000
● one thread
● run-time = 3.67 seconds.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Results

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Results

● We can see that a good assignment of iteration to
threads can have a very significant effect on
performance.

● In OpenMP, assigning iterations to threads is called
scheduling.

● The schedule clause can be used to assign iterations
in a parallel for directive.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

The Schedule Clause

● Default schedule:

● Cyclic schedule:

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

schedule (type , chunksize)

● Type can be:
● static: the iterations can be assigned to the threads before

the loop is executed.
● dynamic or guided: the iterations are assigned to the threads

while the loop is executing.
● auto: the compiler and/or the run-time system determine the

schedule.
● runtime: the schedule is determined at run-time.
● The chunksize is a positive integer.

(a chunk of iterations is a block of iterations that would be executed consecutively)

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

The Static Schedule Type

Copyright © 2010, Elsevier Inc. All rights Reserved

twelve iterations, 0, 1, . . . , 11, and three threads

The system assigns chunks of chuncksize iterations to each
thread in a round-robin fashion.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

 0

The Static Schedule Type

Copyright © 2010, Elsevier Inc. All rights Reserved

twelve iterations, 0, 1, . . . , 11, and three threads

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

 0

The Static Schedule Type

Copyright © 2010, Elsevier Inc. All rights Reserved

twelve iterations, 0, 1, . . . , 11, and three threads

When we have,
Schedule (static, total_iterations/thread_count)
This is equivalent to the default schedule!

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

 0

The Dynamic Schedule Type

● The iterations are also broken up into chunks of chunksize
consecutive iterations.

● Each thread executes a chunk, and when a thread finishes a chunk, it
requests another one from the run-time system.

● This continues until all the iterations are completed.
● The chunksize can be omitted. When it is omitted, a chunksize of 1 is

used.

Copyright © 2010, Elsevier Inc. All rights Reserved

schedule (dynamic , chunksize)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15chunks = 15

Iteration = 45

chunk size = 3

 0

The Guided Schedule Type

● Each thread also executes a chunk, and when a thread finishes a
chunk, it requests another one.

● However, in a guided schedule, as chunks are completed the size
of the new chunks decreases.

● If no chunksize is specified, the size of the chunks decreases
down to 1.

● If chunksize is specified, it decreases down to chunksize, with the
exception that the very last chunk can be smaller than chunksize.

Copyright © 2010, Elsevier Inc. All rights Reserved

schedule (guided , chunksize)

 0

Copyright © 2010, Elsevier Inc. All rights Reserved

Assignment of trapezoidal rule iterations 1–9999 using a
guided schedule with two threads.

 0

The Runtime Schedule Type

● The system uses the environment variable
OMP_SCHEDULE to determine at run-time how to
schedule the loop.

● The OMP_SCHEDULE environment variable can

take on any of the values that can be used for a static,
dynamic, or guided schedule.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

PRODUCERS AND
CONSUMERS

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Queues

● Can be viewed as an abstraction of a line of customers waiting
to pay for their groceries in a supermarket.

● A natural data structure to use in many multithreaded
applications.

● For example, suppose we have several “producer” threads and
several “consumer” threads.

Copyright © 2010, Elsevier Inc. All rights Reserved

● Producer threads might “produce”
requests for data.

● Consumer threads might “consume”
the request by finding or generating
the requested data.

 0

Message-Passing

● Each thread could have a shared message queue, and
when one thread wants to “send a message” to
another thread, it could enqueue the message in the
destination thread’s queue.

● A thread could receive a message by dequeuing the
message at the head of its message queue.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Message-Passing

Copyright © 2010, Elsevier Inc. All rights Reserved

Example: A program in which each thread generates random
integer “messages” and random destinations for the messages. (the user specify
the number of messages each thread should send)

 0

Sending Messages

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Receiving Messages

Copyright © 2010, Elsevier Inc. All rights Reserved

queue size = enqueued − dequeued;

 0

Termination Detection

Copyright © 2010, Elsevier Inc. All rights Reserved

each thread increments this after
completing its for loop

 0

Startup (1)

● When the program begins execution, a single thread,
the master thread, will get command line arguments
and allocate an array of message queues: one for each
thread.

● This array needs to be shared among the threads,

since any thread can send to any other thread, and
hence any thread can enqueue a message in any of the
queues.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Startup (2)

● One or more threads may finish allocating their
queues before some other threads.

● We need an explicit barrier so that when a thread

encounters the barrier, it blocks until all the threads in
the team have reached the barrier.

● After all the threads have reached the barrier all the

threads in the team can proceed.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

The Atomic Directive (1)

● Unlike the critical directive, it can only protect critical
sections that consist of a single C assignment statement.

● Further, the statement must have one of the following

forms:

Copyright © 2010, Elsevier Inc. All rights Reserved

Example

 0

The Atomic Directive (2)

● Here <op> can be one of the binary operators

● Many processors provide a special load-modify-store
instruction.

● A critical section that only does a load-modify-store

can be protected much more efficiently by using this
special instruction rather than the constructs that are
used to protect more general critical sections.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Critical Sections

● OpenMP provides the option of adding a name to a critical
directive:

● When we do this, two blocks protected with critical
directives with different names can be executed
simultaneously.

● However, the names are set during compilation, and we
want a different critical section for each thread’s queue.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Locks

● A lock consists of a data structure and
functions that allow the programmer to
explicitly enforce mutual exclusion in a critical
section.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Locks

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Using Locks in the Message-Passing
Program

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Using Locks in the Message-Passing
Program

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Some Caveats

1. You shouldn’t mix the different types of mutual
exclusion for a single critical section.

2. There is no guarantee of fairness in mutual

exclusion constructs.

3. It can be dangerous to “nest” mutual exclusion
constructs.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Concluding Remarks (1)

● OpenMP is a standard for programming
shared-memory systems.

● OpenMP uses both special functions and
preprocessor directives called pragmas.

● OpenMP programs start multiple threads rather
than multiple processes.

● Many OpenMP directives can be modified by
clauses.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Concluding Remarks (2)

● A major problem in the development of shared
memory programs is the possibility of race
conditions.

● OpenMP provides several mechanisms for
insuring mutual exclusion in critical sections.

● Critical directives
● Named critical directives
● Atomic directives
● Simple locks

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Concluding Remarks (3)

● By default most systems use a block-
partitioning of the iterations in a parallelized
for loop.

● OpenMP offers a variety of scheduling options.
● In OpenMP the scope of a variable is the

collection of threads to which the variable is
accessible.

Copyright © 2010, Elsevier Inc. All rights Reserved

 0

Concluding Remarks (4)

● A reduction is a computation that repeatedly
applies the same reduction operator to a
sequence of operands in order to get a single
result.

Copyright © 2010, Elsevier Inc. All rights Reserved

