
PROCESS
SYNCHRONIZATION

Lab 05

YOU NEED!

Three things are necessary:

1. a text editor

2. g++ compiler

3. C++ libraires:

 iostream

 unistd.h

 pthread.h

 semaphore.h

2

SEMAPHORE

Semaphore is an integer variable which is accessed or
modified by using two atomic operations: wait() and
signal().

In this lab, we learn about process synchronization
using semaphores to understand the implementation of
sem_wait() and sem_signal() and avoid a race
condition among threads.

3

EXAMPLE

The following program creates two threads: one to
increment the value of a shared variable and second
to decrement the value of the shared variable.

Both threads make use of a semaphore variable so
that only one of the threads is executing in its critical
section.

4

5

#include <iostream>

#include <unistd.h>

#include "pthread.h"

int shared=1; //shared variable

void *fun1(void *) {

int x;

x=shared;//thread1 reads value of shared variable

printf("Thread1 reads the value as %d\n",x);

x++; //thread1 increments its value

printf("Local update by Thread1: %d\n",x);

sleep(1); //thread1 is preempted by thread 2

shared=x; //thread one updates the value of shared variable

printf("Value of shared variable updated by Thread1 is: %d\n",shared);

}

// ***************************************
void *fun2(void *){

int y;

y=shared;//thread2 reads value of shared variable

printf("Thread2 reads the value as %d\n",y);

y--; //thread2 increments its value

printf("Local update by Thread2: %d\n",y);

sleep(1); //thread2 is preempted by thread 1

shared=y; //thread2 updates the value of shared variable

printf("Value of shared variable updated by Thread2 is: %d\n",shared);

}

// **************************************

int main() {

pthread_t thread1, thread2;

pthread_create(&thread1, NULL, fun1, NULL);

pthread_create(&thread2, NULL, fun2, NULL);

pthread_join(thread1, NULL);

pthread_join(thread2,NULL);

printf("Final value of shared is %d\n",shared);

return 0;

}

POSSIBLE OUTPUT

6

• The final value of the variable shared should be 1! It is not! Why?

• How to ensure that only one thread is running its critical section at any given time?

7

• Using semaphore s, the final value of the variable

“shared” will be 1.

• When any thread executes the wait operation the value

of “s” becomes zero.

• The other thread is cannot execute the wait operation on

“s” successfully. It will not read the inconsistent value of

the shared variable.

• This ensures that only one thread is running its critical

section at any given time.

• How to enforce a specific order of execution?

8

• Can you explain what happened?

EXERCISE

1) Given four threads, show how to use semaphores to force the execution order T1,
T2, T3, T4.

2) Write a C++ program to illustrate that.

9

	Slide 1: Process Synchronization
	Slide 2: You need!
	Slide 3: Semaphore
	Slide 4: Example
	Slide 5
	Slide 6: Possible Output
	Slide 7
	Slide 8
	Slide 9: Exercise

