
Algorithms and Data
Structures (CS211)

1

What this course will cover?

2

3

Textbooks:
• Michael T. Goodrich , Roberto Tamassia, Michael H. Goldwasser .

“Data Structures and Algorithms in Java”, 6th edition 2014,

• Mark A. Weiss, "Data Structures and Algorithm Analysis in Java",
3th ed., Addison Wesley,2011 , ISBN: 0-132-57627-9.

• A. Drozdek, "Data Structures and Algorithms in Java", 3th edition,
Cengage Learning, 2008.

Lecture 2:Algorithm

4

Algorithm

Input instance
Output related to

the input as required

• Algorithm is an explicit and unambiguous sequence of

elementary instructions
• describes actions on the input instance.
• There are many correct algorithms for solving the same problem.

5

What is a good algorithm?

• Algorithm: outline the essence of a computational

procedure, step-by-step instruction.

• Program: an implementation of an algorithm in some
programming language.

Algorithm& Program

Efficient:
Running time.
Size of algorithm.
Number of data elements.
Space used (The number of bits in an input
number).

6

Algorithm Analysis

• Why we should analyze algorithms?

– Predict the resources that the algorithm requires

• Computational time (CPU consumption)

• Memory space (RAM consumption)

– The running time of an algorithm is:

• The total number of primitive operations executed

• Also known as algorithm complexity

7

Time Complexity

• Worst-case

– An upper bound on the running time for any
input of given size

• Average-case

– Assume all inputs of a given size are equally
likely

• Best-case

– The lower bound on the running time

8

Time Complexity – Example

• Sequential search in a list of size n

– Worst-case:

• n comparisons

– Best-case:

• 1 comparison

– Average-case:

• n/2 comparisons

• The algorithm runs in linear time

– Linear number of operations

… … … … … … …

n

9

Algorithms Complexity
• Algorithm complexity is rough estimation of the number of

steps performed by given computation depending on the size of

the input data

– Measured through asymptotic notation

• O(g) where g is a function of the input data size

– Examples:

• Linear complexity O(n) – all elements are

processed once (or constant number of times)

• Quadratic complexity O(n2) – each of the

elements is processed n times

10

Analyzing Complexity of
Algorithms

Examples

11

Complexity Examples(1)

• Runs in O(n) where n is the size of the array

• The number of elementary steps is ~ n

int FindMaxElement(int[] array)
{

int max = array[0];
for (int i=0; i<int n; i++)
{

if (array[i] > max)
{

max = array[i];
}

}
return max;

}

12

Complexity Examples (2)

• Runs in cubic time O(n3)

• The number of elementary steps is ~ n3

decimal Sum3(int n)

{

decimal sum = 0;

for (int a=0; a<n; a++)

for (int b=0; b<n; b++)

for (int c=0; c<n; c++)

sum += a*b*c;

return sum;

}

13

Complexity Examples (3)

• Runs in quadratic time O(n*m)

• The number of elementary steps is ~ n*m

long SumMN(int n, int m)

{

long sum = 0;

for (int x=0; x<n; x++)

for (int y=0; y<m; y++)

sum += x*y;

return sum;

}

14

Complexity Examples (4)

• Runs in quadratic time O(n*m)

long SumMN(int n, int m)

{

long sum = 0;

for (int x=0; x<n; x++)

for (int y=0; y<m; y++)

if (x==y)

for (int i=0; i<n; i++)

sum += i*x*y;

return sum;

}

15

Complexity Examples (5)

• Runs in linear time O(n)

• The number of elementary steps is ~ n

decimal Factorial(int n)

{

if (n==0)

return 1;

else

return n * Factorial(n-1);

}

16

17

Recursion
Reduction is the single most common technique used in
designing algorithms.
Recursion is a particularly powerful kind of reduction. In
which the method call itself.
Java program to sum the integers from 0 to n using recursion.

package javaapplication69;
public class JavaApplication69 {

static int sum(int n){
if(n>=1)return sum(n-1)+n; return n; }

public static void main(String[] args) {
int x= sum(5);
System.out.println(x); }}

What is a data structure?
Any computer software deals with data

▪ Organize …. Store …. Process …. Use it!

Facebook data: Your account details (name, email,
password), your friends list, your images and videos, your
posts (replies, likes), Ads, groups, attached files … etc

Dictionary: There are many thousands of words? How to
store the words? Sorted?

Google maps: I want to go From School to Home? From
Cairo to London? How to store these locations/path ?
How to efficiently find the path between 2 points?

18

Classification of Data Types

• Data types are normally divided into two

categories:

– Primitive or Simple Data Types

– Non-Primitive or Structured Data Types

19

• Simple Data types: also known as atomic data types
 have no component parts. E.g. int, char, float, etc.

• Structured Data types: hold a collection of data
values. This collection will generally consist of the
primitive data types.

Classification of Data Types

20

Classification of Data Types

Data Types

Primitive Non-Primitive

IntegerFloat Character Pointer

21

Classification of Data Types

Non-Primitive

Linear List Non-Linear List

Array

Link List

Stack Queue

Graph Trees

22

Non-Primitive Data Types

• The most commonly used operation on data structure are broadly
categorized into following types:
– Create

– Selection

– Updating

– Searching

– Sorting

– Merging

– Delete

23

data structure: is a way to organize information to enable

efficient computation over that information

A data structure supports certain operations, each with a:

– Meaning: what does the operation do/return

– Performance: how efficient is the operation

Examples:

– List with operations insert and delete

– Stack with operations push and pop

Data Structures

24

Abstract Data Types (ADTs)

• in Object-oriented programming, abstraction is a process of
hiding the implementation details from the user, only the
functionality will be provided to the user. In other words, the
user will have the information on what the object does instead
of how it does it.

• Abstraction? Anything that hides details & provides only the
essentials.

• Examples: an integer 165 = 1.102+6.101+5.100,
procedures/subprograms, etc.

• Abstract Data Types (ADTs): Simple or structured data types
whose implementation details are hidden…

25

Characteristics of Data Structures:

Data Structure Advantages Disadvantages

Array
Quick inserts
Fast access if index
known

Slow search
Slow deletes
Fixed size

Ordered Array
Faster search than
unsorted array

Slow inserts
Slow deletes
Fixed size

Stack Last-in, first-out access Slow access to other items

Queue First-in, first-out access Slow access to other items

Linked List
Quick inserts
Quick deletes

Slow search

Binary Tree

Quick search
Quick inserts
(If the tree remains
balanced)

Deletion algorithm is complex

Graph
Best models real-world
situations

Some algorithms are slow and very
complex

26

Data Structures Efficiency

Data Structure Add Find Delete
Get-by-
index

Array (T[]) O(n) O(n) O(n) O(1)

Linked list
(LinkedList<T>)

O(1) O(n) O(n) O(n)

Resizable array list
(List<T>)

O(1) O(n) O(n) O(1)

Stack (Stack<T>) O(1) - O(1) -

Queue (Queue<T>) O(1) - O(1) -

27

Choosing Data Structure

• Arrays (T[])

– Use when fixed number of elements should be processed by

index

• Resizable array lists (List<T>)

– Use when elements should be added and processed by index

• Linked lists (LinkedList<T>)

– Use when elements should be added at the both sides of the

list

– Otherwise use resizable array list (List<T>)
28

Choosing Data Structure

• Stacks (Stack<T>)

– Use to implement LIFO (last-in-first-out) behavior

– List<T> could also work well

• Queues (Queue<T>)

– Use to implement FIFO (first-in-first-out) behavior

– LinkedList<T> could also work well

• Hash table based dictionary (Dictionary<K,T>)

– Use when key-value pairs should be added fast and searched

fast by key

– Elements in a hash table have no particular order

29

lecture 2: Array

- ARRAYS
Meaning of Array
An array is a data structure

Arrays in Java

Declaring Arrays
An array features

- FUNCTIONS (METHODS)
Method declaration & definition with parameters
Method calling

- Pointer
- Struct

Lecture content:

You learned how to store a single data point in a variable.
Then, in the Datatypes, you learned that its best to store data
of a certain type in a variable with that respective type:
 store a character string in a String variable,
 store a whole number, integer in an int variable,
 store a floating point number in a double variable, and so

on.

Now that we are becoming more advanced Java
programmers, we want to store a collection of data in a single
data structure for later manipulation.

Meaning of Array

• Array is a collection of variables of the same type.
Each variable(cell) has an index, refer to the value
stored in that cell.

Array

Making an array in a Java program involves three distinct steps:

•Declare the array name.

•Create the array.

•Initialize the array values.

We refer to an array element by putting its index in square brackets after the array name :

the code a[i] refers to element i of array a][.

Pointer type

• The pointer type is a simple type whose domain
elements are memory addresses.

• Pointer types give the programmer access to the
memory through indirect addressing.

• The pointer type plays an all-important role in abstract
data structure implementations.

• Java doesn’t have pointers but has references. All
objects in java are references and can use them like
pointers. 34

For example , the following code makes an array
of n numbers of type double
all initialized to : zero

Example 1

double[] a; // declare the array

a = new double[n]; // create the array of length n

for (int i = 0; i < n; i++) // elements are indexed from 0 to n-1.

a[i] = 0.0; // initialize all elements to 0.0

int[] p = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};

//p is reference (pointer) to the performed array.

int[] p;

x=p;

//x is reference (pointer) to the same array.

Declaring Arrays

double[] a;
a = new double[10];
for (int k=0; k < a.length; k++)
{ a[k] = 1.0; }

/** Counts the number of times an integer 11 appears in an array
**/

int[] a = {2, 11, 5, 7, 11, 13, 17, 11, 23, 29};

int count = 0;

for (int k=0; k < a.length; k++) // note the use of the "for each"
//loop

{

if (a[k] == 11) // check if the current element equals 11

count++; }

Example 2

Here is the list of most important array features you must know
(i.e. be able to program)

 copying and cloning

 insertion and deletion

 searching and sorting

An array features

int[] a = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};

int[]p;

p=a.clone(); //COPYING A INTO P

for (int k=0; k < a.length; k++)

System.out.println(p[k]);

Cloning an Array :
copies all of the cells of a into a new array and

assigns p to point to that new array

run:
2
3
5
7
11
13
17
19
23
29

Sara Sluiman

Sara Sluiman

Sara Sluiman

Illustrating Two-Dimensional Array

In a 2D array, we generally consider the first index to
be the row, and the second to be the column:

a[row, col]

40

Processing Multidimensional
Arrays

• Multidimensional arrays are often processed
using for statements.
To process all the items in a two-dimensional
array, a for statement needs to be nested inside
another.

int[][] A = new int[3][4];
The following loop stores 0 into each location in
two dimensional array A :

for (int row = 0; row < 3; row++)
{
for (int column = 0; column < 4; column++)

{
A [row][column] = 0;

}
}

41

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Home Work 1 :

• Using a mathematical function in the Java Math
class and handling of two–dimensional arrays;

• - calculates the max – min value?

42

public class MaxMin{
public static void main(String[]args) {

double mat[] []= { {2.3, 5.1, 9.9}, {8.3, 4.5, 7.7},{
5.2, 6.1, 2.8}}

int n = mat.length;
int m= mat[0].length;
double maxmin = 0.0;
for (int j = 0; j < m; j++){

double min = mat[j][0];
for (int i = 1; I <n ; i ++){

min = Math.min(min,mat[i][j]);
}
if (j==0){

maxmin = min;
}else{

maxmin = Math.max(maxmin, min);
}

}
System.out.println(“The max-min value is” + maxmin);
}

}

 Running the

program produces

the following

result:

The max-min value

is 4.5

43

Sara Sluiman

Sara Sluiman

Sara Sluiman

Ragged array ((Nonrectangular)OR(
not regular)):

Ragged arrays are arrays of arrays such that:

member arrays can be of different sizes.

we can create a 2-D arrays but with variable

number of columns in each row.

These type of arrays are also known as

Jagged arrays.

each row can differ from the others.

Home Work 2:

• Give an example on Ragged array that declares a single-
dimensional array having three elements, each of which
is a single-dimensional array of integers.

• The first element is an array of 3 integers, the second is
an array of 4 integers, and the third is an array of 2
integers. It uses initializers to fill the array elements with
values.

•

45

46

Sara Sluiman

string s[]={“this” , “is” , “my” , “toy”};

for (int k=0; k < s.length; k++)

System.out.print(s[k] + “ “);

Array of strings:

Home Work 3:find maximum value

package array4;
import java.util.Scanner;
public class Array4 {

public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.print("Enter three floating-point values : ");
double number1 = input.nextDouble();
double number2 = input.nextDouble();
double number3 = input.nextDouble();
double result = maximum(number1, number2, number3);
System.out.println("Maximum is: " + result);
}
public static double maximum(double x, double y, double z)
{double maximumValue = x;
if (y > maximumValue)
maximumValue = y;
if (z > maximumValue)
maximumValue = z;
return maximumValue;}}

Enter three floating-point values : 4.5
1.2
9.7
Maximum is: 9.7

48

package array3;

public class Array3 {

public static void main(String[] args)

{

double d1 = 10.0;

double d2 = 20.0;

double d3 = 30.0;

double d4 = 40.0;

System.out.println(average(d1,d2));

System.out.println(average(d1,d2,d3));

System.out.println(average(d1,d2,d3,d4));

}

public static double average(double...numbers) {

double total = 0.0;

for(double x: numbers)

total+=x;

return total /numbers.length ; } }

Home Work 4: Find average

run:
15.0
20.0
25.0

Home work 5: Write a program in Java that:
• calculates the total in terms of the index of the row and column

(two-dimensional Array([4] [3])
• print the output.

public class Array2 {
public static void main(String[] args) {
int[][]total=new int[4][3];
int[][]result; int i,j;
result=total;

for(i=0;i<total.length;i++)
{for(j=0;j<total[i].length;j++)
total[i][j]=(i+j);}

for(i=0;i<result.length;i++)
{for(j=0;j<result[i].length;j++)
System.out.print(" "+result[i][j]);
System.out.println();}

}}

0 1 2
1 2 3
2 3 4
3 4 5

Home work 6: Write a program in Java using scanner class to read the input and find the
maximum and minimum value .

package array7;
import java.util.*;
public class Array7 {

public static void main(String[] args) {
Scanner input=new Scanner(System.in);
int m [][]=new int[2][5];
for(int i=0;i<2;i++)
{for(int j=0;j<5;j++)

m[i][j]=input.nextInt();}
int max_element=max(m);
int min_element=min(m);
System.out.println("max="+max_element);
System.out.println("min="+min_element);
}

static int max(int f[][]){
int max=f[0][0];
for(int i=0;i<2;i++)

for(int j=0;j<5;j++)
if (f[i][j]>max) max=f[i][j];

return max;}

static int min(int f[][]){
int min=f[0][0];
for(int i=0;i<2;i++)

for(int j=0;j<5;j++)
if (f[i][j]<min) min=f[i][j];

return min;}
}

struct
Consider a data structure representing a person that includes a first name,

last name, and birthday. The data structure look in various procedural language.

struct MEMBER

{

String FIRSTNAME;

String LASTNAME;
int BIRTHYEAR;

};

Java definitively has no structs, The equivalent in Java to a struct
would be class :

Class MEMBER

{

public String FIRSTNAME ;
public String LASTNAME ;
Public int BIRTHYEAR;

};

lecture 3: Linked list

Arrays disadvantages

Linked list introduction

What is a linked list?

Advantages of Linked List

Disadvantages of Linked List

Types of Linked List

Linked List operations

Lecture content:

1) Memory Wastage.

if we declare an array of size 10

and store only 6 elements in it

then the space of 4 elements

are wasted

2) In an unordered array, searching is slow.

3) In an ordered array, insertion is slow.

4) In both kinds the size is fixed.

5) In both kinds of arrays, deletion is slow.

In deletion algorithm is the assumption that holes

are not allowed in the array , the occupied cells

must be arranged contiguously: no holes allowed.

Arrays disadvantages:

 Linked list data storage structure that solves some of these problems

 Linked lists are probably the second most commonly used general-
purpose storage structures after arrays.

 In fact, you can use a linked list in many cases in which you use an
array, unless you need frequent random access to individual items
using an index.

 Linked lists aren’t the solution to all data storage problems, but they
are conceptually simpler than some other popular structures such as
trees.

Linked list introduction

A linked list is a linear data structure where each element is a
separate object.

What is a linked list?

 Each element (we will call it a node) of a list is comprising of two
items - the data and a reference to the next node.

 The last node has a reference to null.
 The entry point into a linked list is called the head of the list.
 It should be noted that head is not a separate node, but the

reference to the first node.
 If the list is empty then the head is a null reference.

Sara Sluiman

Sara Sluiman

In a linked list, each data item is embedded in a link
(node).

A link (node) is an object of a class called something
like Linklist.

Each object contains a pointer to the next link in the
list.

Sara Sluiman

1. Dynamic Data Structure

•Linked list is a dynamic data structure so it can grow and shrink
at runtime by allocating and de-allocating memory. So there is
no need to give initial size of linked listلا تحتاج لحجز حجم من البداية.

2. Easily Insertion and Deletion

Insertion and deletion of nodes are really easier. Unlike array
here we don’t have to shift elements after insertion or deletion
of an element. In linked list we just have to update the address
present in next pointer of a node.

3. No Memory Wastage

•As size of linked list can increase or decrease at run time so
there is no memory wastage

Advantages of Linked List:

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

1. More Memory Usage

•More memory is required to store elements in linked list as
compared to array. Because in linked list each node contains a
pointer and it requires extra memory for itself.

2. Traversal اجتياز او وصول

•Elements or nodes traversal is difficult in linked list. We can not
randomly access any element as we do in array by index. For
example if we want to access a node at position n then we have to
traverse all the nodes before it. So, time required to access a node
is large.

3. Reverse Traversing

•In linked list reverse traversing is really difficult. In case of doubly
linked list its easier but extra memory is required for back pointer
hence wastage of memory.

Disadvantages of Linked List:

https://www.thecrazyprogrammer.com/2015/09/doubly-linked-list-in-c-and-cpp.html
Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Types of Linked List:
 Single linked list.

 Double linked list.

 Circle linked list.

Sara Sluiman

Types of Linked List:
 Single linked list.

Linked List
operations:
o AddFirst.

o Traversing.

Start with the head and access
each node until you reach null.
Do not change the head
reference.

creates a node and
prepends it at the beginning
of the list

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

appends the node to the end of the list

o AddLast.

o InsertAfter.

o RemoveFirst.
o RemoveLast.
o RemoveAt.
o ……

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

AddFirst:

Sara Sluiman

AddLast:

RemoveFirst:

class Node
{

private String elem;
private Node next;
public Node(String s , Node n)
{ elem=s; next=n; }
public String getElem()
{ return elem; }
public Node getNext()
{ return next; }
public void setElem(String newElem)
{ elem=newElem; }
public void setNext(Node newNext)
{ next=newNext; }

}

class SLink
{

protected Node head;
protected long size;
public SLink()
{ head=null; size=0; }
public void addFirst(Node
v)
{

v.setNext(head);
head=v;
size++;

}

public void deletefirst()

{ String r=head.getElem();
head=head.getNext();
size =size-1;
System.out.println(r);

} public void addLast(Node v)
{

Node tail=head;
while(tail.getNext()!=null)
{ tail=tail.getNext(); }
tail.setNext(v);
size++;

}

public void displaylist()
{

Node cur=head;
for(intk=0 ; k<size ; k++)
{

System.out.print(cur.getElem() + "
");
cur=cur.getNext();

}
System.out.println();

}
}

Main
SLink S1=new SLink();
Node N1=new Node("Heba",null);
S1.addFirst(N1);
S1.displaylist();
N1=new Node("Sara",null);
S1.addFirst(N1);
S1.displaylist();
N1=new Node("Ali",null);
S1.addFirst(N1);
S1.displaylist();
S1.deletefirst();
S1.displaylist();

run:
Heba
Sara Heba
Ali Sara Heba
Ali
Sara Heba
BUILD SUCCESSFUL
(total time: 1 second)

Home work

design java program that create a list of delegates of beauty company

(delname , delno) the program contains function:

*Insertfirst function to insert new data at the beginning of the list.

*Insertlast function to insert new data at the last of the list.

*Display function to display the data of list.

package ls2;
class Node
{private String delname; private String delno; private Node next;
public Node(String name,String no,Node n)
{delname=name;delno=no; next=n;}
public String getname() {return delname;}
public String getno() {return delno;}
public Node getnext() {return next;}
public void setname(String newname)
{delname= newname;}
public void setno(String newno)
{delno= newno;}
public void setnext(Node newnext)
{next= newnext;} }

class SLink
{protected Node head;
protected long size;
public SLink()
{head=null;size=0;}

public void addfirst(Node v)
{v.setnext(head);
head=v;
size++;}

public void deletefirst()
{ String r=head.getname();

head=head.getnext();
size =size-1;
System.out.println(r);}

public void displaylist()
{Node cur=head;
for(int k=0;k<size;k++)
{System.out.print(cur.getname()+" " + cur.getno()+ " ");
cur=cur.getnext();}
System.out.println();}

public void addlast(Node v) {
Node tail=head;
while (tail.getnext()!=null)
{tail=tail.getnext();}
tail.setnext(v);
size++;}}

public class LS2 {
public static void main(String[] args) {

// TODO code application logic here
SLink S1=new SLink();
Node N1=new Node("sara","0553627744",null);
S1.addfirst(N1);
S1.displaylist();
N1=new Node("samia","0542213200",null);

S1.addfirst(N1);
System.out.print("list: "); S1.displaylist();

N1=new Node("amira","0554344454",null);
S1.addlast(N1);

System.out.print("list after insert at last: ");
S1.displaylist();
}}

run:
sara 0553627744
list: samia 0542213200 sara 0553627744
list after insert at last: samia 0542213200 sara 0553627744
amira 0554344454
samia
sara 0553627744 amira 0554344454
BUILD SUCCESSFUL (total time: 1 second)

lecture 4: Double Linked list

Double Linked List introduction

Advantages and Disadvantages of Doubly Linked List

Double Linked List operations:

o Add_First.

o Add_After.

o Add_Before.

o Remove.

o ……

Lecture content:

• a doubly linked list is a linked data structure that consists of a
set of sequentially linked records called nodes.

Each node contains two fields, called links, that are references to
the previous and to the next node in the sequence of nodes.

The beginning and ending nodes' previous and next links,
respectively, point to some kind of terminator, typically a
sentinel node or null, to facilitate traversal of the list.

Double Linked List introduction

https://en.wikipedia.org/wiki/File:Doubly-linked-list.svg
https://en.wikipedia.org/wiki/File:Doubly-linked-list.svg

A doubly linked list whose nodes

contain three fields :

• Data value,

• the link to the next node ,

• the link to the previous node

Advantages:
1. We can traverse in both directions i.e. from starting to end
and as well as from end to starting.
2. It is easy to reverse the linked list.
3. If we are at a node, then we can go to any node. But in linear
linked list, it is not possible to reach the previous node.

Disadvantages:
1. It requires more space per space per node because one extra
field is required for pointer to previous node.
2. Insertion and deletion take more time than linear linked list
because more pointer operations are required than linear linked
list.

Advantages and Disadvantages of Doubly Linked List

84

Inserting a node

85

Inserting a node

86

Deleting a node

87

88

89

Sara Sluiman

Sara Sluiman

Sara Sluiman

90

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

91

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

class DNode

{

public String name;

public int id;

public DNode next , prev;

public DNode (String na ,int i,DNode nx , DNode p)

{

name=na; id=i;

next=nx; prev=p;

}}

92

class DList

{public int size; public DNode header , trailer;

public DList)(

{size=0; header=new DNode(null,0,null,null);

trailer=new DNode(null,0,header,null); header.next=trailer;

}

public boolean isEmpty)(

{ return size==0 ;}

public DNode getFirst)(throws Exception

{if(isEmpty()) throw new Exception(“list is empty");

else return header.next;}

93

public DNode getLast)(throws Exception

{

if(isEmpty()) throw new Exception(“list is empty");

else return trailer.prev;

}

public DNode getprev(DNode v) throws Exception

{ if(v==header)

throw new Exception(“can’t move back past the header of the

list”);

return v.prev ;}

94

public void addAfter(DNode v , DNode z) throws Exception

{

DNode w=getnext(v);z.prev=v;z.next=w;

w.prev=z; v.next=z ;size++;}

public void addBefore(DNode v , DNode z) throws Exception

{

DNode u=getprev(v);

z.prev=u; z.next=v; v.prev=z;

v.next=z; size++ ;}

95

public DNode getnext(DNode v) throws Exception
{

if(v==trailer)
throw new Exception(" can’t move forward past the trailer of the list ");

return v.next ;
}

public void addFirst(DNode v) throws Exception

{ addAfter(header,v); }

public void addLast(DNode v) throws Exception

{ addBefore(trailer,v);}

96

public void remove(DNode v) throws Exception

{

DNode u=getprev(v);

DNode w=getnext(v);

w.prev=u;

u.next=w;

v.prev=null;

v.next=null;

size--;

}

97

public void display)(

{DNode c=header.next;

for(int i=0 ; i<size ; i++)

{System.out.println(c.id + " " + c.name); c=c.next;

}}}

public class JavaApplication11

{public static void main(String[] args) throws Exception

{DList d1=new Dlist();

DNode n1=new DNode("reham",1,null,null(;

d1.addFirst(n1(;d1.display)(;

}}

98

lecture 5: Circle Linked List

Circle Linked List introduction

Circle Linked List category

Circular Linked List Applications

Advantages and Dis-Advantages of Circular

Linked Lists

Designing and Implementing a Circularly Linked

List

Operations on a Circularly Linked List

Lecture content:

 Circular linked list is a linked list where all nodes are
connected to form a circle.

 A circular linked list can be a singly circular linked list or

doubly circular linked list.

Introduction to Circular Linked List

• Circle Linked List category :

• 1. Singly Linked List 2. Doubly Circular Linked List

 In case of Singly Linked List, the last node points to the first.

 In case of Doubly Circular Linked List, the last node points to

the first and the first node points back to the last node.

Circle Linked List category :

 Circular Linked Lists are useful for playing videos and
sound files in looping mode.

 There are also steeping stone to implementing graphs.

Circular Linked List Applications

1. Any node can be a starting point:

We can traverse the whole list by starting from any point. We just
need to stop when we have gone through the whole list i.e. the
first visited node is visited again.

2. Useful for implementation of queue:
Unlike the usual implementation that needs a front and a rear
pointer, we don’t need to maintain two pointers if we use circular
linked list. We can maintain a pointer to the last inserted node
which will always contain the address to the first node.

Circular lists are useful in applications to repeatedly go
around the list, such as, a set of processes that should be time-
shared.

Advantages of Circular Linked Lists:

For example:

CPU Scheduling: When multiple applications are running on a

PC, it is common for the operating system to put the running

applications on a list and then to cycle through them, giving

each of them a slice of time to execute, and then making them

wait while the CPU is given to another application.

Dis-Advantages of Circular Linked Lists:

• Possibility of an infinite loop.

Designing and Implementing a Circularly
Linked List

Is a singularly linked list which the next reference of
the tail node is set to refer back to the head of the
list (rather than null).

-head is tail.getNext()

106

Operations on a Circularly Linked List

• The operation rotate():

Moves the first element to the end of the list.

before the rotation,
representing sequence
{LAX, MSP, ATL, BOS};

after the rotation,
representing sequence
{MSP, ATL, BOS, LAX}.

107

- We can add a new element at the front of
the list by creating a new node and linking it
just after the tail of the list.

- STL is the first element of the list
108

package circle;

class Node

{ public String elem; public Node next;

public Node(String s , Node n)

{ elem=s; next=n; }

}

class CLinkedList
{

public Node tail = null;
public int size = 0;
public CLinkedList()
{}

public boolean isEmpty()
{ return size == 0;}

109

public String first()
{

if (isEmpty()) return null; return tail.next.elem;
}

public String last()
{ if (isEmpty()) return null; return tail.elem; }

110

Rotate method (update):
rotate the first element to the back of the

list.

public void rotate()

{ // rotate the first element to the back of the list

if (tail != null) // if empty, do nothing

tail = tail.next; } // the old head becomes the new tail

public void addFirst(String e)

{ if (size == 0)

{ tail = new Node(e, null); tail.next=tail; }

// link to itself circularly

else { Node newest = new Node(e, tail.next);

tail.next=newest; } size++; }

111

public void addLast(String e)

{

addFirst(e); // insert new element at front of list

tail = tail.next; // now new element becomes the tail

}

public String removeFirst()

{ if (isEmpty()) return null;

Node head = tail.next;

if (head == tail) // أي يوجد عقدة واحدة

tail = null; // must be the only node left

else tail=head.next; // removes ”head” from the list

size=size-1; return head.elem; } 112

public void display()
{ Node c=tail.next;

for(int k=0 ; k<size ; k++) {
System.out.print(c.elem + " "); c=c.next; }

System.out.println(); }}

public class circle

{ public static void main(String[] args)

{ CLinkedList C1 = new CLinkedList();

C1.addFirst("nora1"); C1.addFirst("nora2");

C1.addFirst("nora3"); C1.addFirst("nora4");

C1.display(); } }
113

