
Stack

Lecture content:

Stacks definition

Fundamental operations

How to understand a stack practically?

Mainly basic operations are performed in the stack

Advantages and Dis-Advantages of stack

Implementation of stack

Data Structures and algorithms in Java 2

Stacks definition:

Stack is a linear data structure which follows a particular
order in which the operations are performed. The order
may be LIFO(Last In First Out) or FILO(First In Last Out). A
stack is a limited access data structure (restricted)-
elements can be added and removed from the stack only at
the top.

fundamental operations :
pushing and popping of items at the top of the
stack.

How to understand a stack practically?

There are many real life examples of stack.

Consider the simple example of plates stacked over one
another in canteen.

The plate which is at the top is the first one to be
removed, i.e. the plate which has been placed at the
bottom position remains in the stack for the longest
period of time. So, it can be simply seen to follow
LIFO/FILO order.

Mainly basic operations are performed in the stack:

 Push: Adds an item in the stack. If the stack is full, then it is said to
be an Overflow condition.

 Pop: Removes an item from the stack. The items are popped in the
reversed order in which they are pushed. If the stack is empty, then
it is said to be an Underflow condition.

 Peek or Top: Returns the top element without removing it. Return
null or zero if the stack is empty.

 isEmpty: Returns true if stack is empty, else false.

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Sara Sluiman

Stack Operations (continued)

• An item removed (pop) from the stack is the last element that
was added
(push) to the stack. A stack has LIFO (last-in-first-out) ordering.

push A
push B
push C
pop
pop
pop
push D

• Stack inserts followed by stack deletions reverse the order of
the elements

-Stacks are last in first out so two major applications that Stacks
accomplish are things like State and reversing. What I mean by
state is a particular setting or structure that a program has at a
point in time. Say you are writing a notepad application.

-A good use for a stack would be the undo/redo.

Advantages of stack

Dis-Advantage of stack

Stack can not be randomly accessed .

Implementation of stack:

There are two ways to implement a stack:
-Using array - Using linked list

class ArrayStack
{

public static final int CAPACITY=1000;
private String[] data;
private int t=-1;
public ArrayStack()
// constructs stack with default capacity

{ this(CAPACITY); }

Array Implementation:

public ArrayStack(int c)
// constructs stack with given capacity

{ data = (String[]) new String[c]; }
public int size()
{ return (t + 1); }

public boolean isEmpty()
{ return (t==-1); }
public void push(String e)
{ if (size() == data.length)

System.out.println("Stack is full");
data[++t] = e; }

public String top()
{

if (isEmpty()) return null; return data[t];
}

public String pop()
{ if (isEmpty())

return null;
String answer = data[t];
data[t] = null; t=t-1;
return answer;

} } // end class

//main
ArrayStack stack1=new ArrayStack(20);

stack1.push("Makkah");
stack1.push("Madinah");
stack1.push("Taief");

System.out.println(stack1.pop());
System.out.println(stack1.pop());

Run:
Taief
Madinah

class Node
{

public String elem; public Node next;
public Node(String s , Node n)
{ elem=s; next=n; }}

class SLink
{

protected Node head; protected long size;
public SLink()
{ head=null; size=0; }
public void addFirst(Node v)
{ v.next=head;

head=v; size++; }

Linked list Implementation:

public String removefirst()
{

if(head==null) return null;
String M=head.elem; head=head.next;
size=size-1; return M;

}
public void displaylist() {

Node cur=head;
for(int k=0 ; k<size ; k++)
{

System.out.print(cur.elem + " ");
cur=cur.next;

}
System.out.println(); }}

main

Node N1=new Node("ATL",null);
S1.addFirst(N1);
N1=new Node("MSP",null);
S1.addFirst(N1);
N1=new Node("LAX",null);
S1.addFirst(N1);
S1.displaylist();
System.out.println();
System.out.println(S1.removefirst());
System.out.println();
S1.displaylist();

run:
LAX MSP ATL

LAX

MSP ATL

lecture 7: Stack applications

Lecture content:

Stack Applications

1. Redo-undo features at many places like editors,
Photoshop.

2. Forward and backward feature in web browsers.

3. Balancing of symbols.

4. Infix to Postfix /Prefix conversion.

5. Recursion and the Runtime Stack.

6. Used in many algorithms like tree traversals

Data Structures and algorithms in Java 17

https://www.geeksforgeeks.org/618/

Application 1:

Text editors usually provide an “undo” mechanism
that cancels recent editing operations and reverts
to former states of a document.

This undo operation can be accomplished by
keeping text changes in a stack.

Application 2:

Internet Web browsers store the addresses of
recently visited sites on a stack.

Each time a user visits a new site, it’s address
“pushed” onto the stack.
The browser then allows the user to “pop” back to
previously visited sites using the “back” button.

Check for balanced parentheses in an expression

Given an expression string exp , write a program to
examine whether the pairs and the orders of
“{“,”}”,”(“,”)”,”[“,”]” are correct in exp.

For example, the program should print true for exp =
“[()]{}{[()()]()}” and false for exp = “[(])”

Application 3:

Algorithm:

1) Declare a character stack S.
2) Now traverse the expression string exp.

a) If the current character is a starting bracket (‘(‘ or ‘{‘ or ‘[‘) then
push it to stack.

b) If the current character is a closing bracket (‘)’ or ‘}’ or ‘]’) then
pop from stack and
if the popped character is the matching starting bracket then
fine
else parenthesis are

not balanced.
3) After complete traversal, if there is some starting bracket left in
stack then “not balanced”

Infix expression: The expression of the form a op b. When an
operator is in-between every pair of operands.

Infix notation: X + Y

Postfix expression: The expression of the form a b op. When an
operator is followed for every pair of operands.

Postfix notation (also known as "Reverse Polish notation"): X Y +

Prefix expression: The expression of the form op a b. When an
operators are written before their operands.

Prefix notation (also known as "Polish notation"): + X Y

Infix to Postfix /Prefix conversion

Application 4:

Why postfix representation of the expression?
The compiler scans the expression either from left to right or from
right to left.
Consider the below expression:

a+b*c+d

The compiler first scans the expression to evaluate the expression b *
c, then again scan the expression to add a to it. The result is then
added to d after another scan.

The repeated scanning makes it very in-efficient. It is better to
convert the expression to postfix(or prefix) form before evaluation.

The corresponding expression in postfix form is: abc*+d+. The
postfix/prefix expressions can be evaluated easily using a stack.

Algorithm (infix postfix)

1. Scan the infix expression from left to right.
2. If the scanned character is an operand, output it.
3. Else,

3.1 If the precedence of the scanned operator is greater than the
precedence of the operator

in the stack(or the stack is empty), push it.
3.2 Else, Pop the operator from the stack until the precedence of the

scanned operator is
less-equal to the precedence of the operator residing on the top

of the stack. Push the
scanned operator to the stack.

4. If the scanned character is an ‘(‘, push it to the stack.
5. If the scanned character is an ‘)’, pop and output from the stack until
an ‘(‘ is encountered.
6. Repeat steps 2-6 until infix expression is scanned.
7. Pop and output from the stack until it is not empty.

Infix to Postfix Conversion

Example 1: convert the expression 3+4*5/6
to postfix

3+4*5/6
Stack:
Output:

3+4*5/6
Stack:
Output: 3

3+4*5 / 6
Stack: +
Output: 3

3+4*5 / 6

Stack: +
Output: 3 4

3+4*5/6
Stack: + *
Output: 3 4

3+4*5/6
Stack: + *
Output: 3 4 5

3+4*5/6
Stack: +
Output: 3 4 5 *

3+4*5/6

Stack: + /
Output: 3 4 5 *

3+4*5/6
Stack: + /
Output: 3 4 5 * 6

3+4*5/6
Stack: +
Output: 3 4 5 * 6 /

3+4*5/6
Stack:
Output: 3 4 5 * 6 / +

infixVect

postfixVect

(a + b - c) * d – (e + f)

Infix to postfix conversion

infixVect

postfixVect

a + b - c) * d – (e + f)

(

stackVect

infixVect

postfixVect

+ b - c) * d – (e + f)

(

a

stackVect

infixVect

postfixVect

b - c) * d – (e + f)

(

a

+

stackVect

infixVect

postfixVect

- c) * d – (e + f)

(

a b

+

stackVect

infixVect

postfixVect

c) * d – (e + f)

(

a b +

-

stackVect

infixVect

postfixVect

) * d – (e + f)

(

a b + c

-

stackVect

infixVect

postfixVect

* d – (e + f)

a b + c -

stackVect

infixVect

postfixVect

d – (e + f)

a b + c -

*

stackVect

infixVect

postfixVect

– (e + f)

a b + c - d

*

stackVect

infixVect

postfixVect

(e + f)

a b + c – d *

-

stackVect

infixVect

postfixVect

e + f)

a b + c – d *

-

(

stackVect

infixVect

postfixVect

+ f)

a b + c – d * e

-

(

stackVect

infixVect

postfixVect

f)

a b + c – d * e

-

(

+

stackVect

infixVect

postfixVect

)

a b + c – d * e f

-

(

+

stackVect

infixVect

postfixVect

a b + c – d * e f

+

-

stackVect

infixVect

postfixVect

a b + c – d * e f

+ -

stackVect

Convert the following expression from infix
postfix:

solution:

Infix to prefix conversion

Expression = (A+B^C)*D+E^5

Step 1. Reverse the infix expression.

5^E+D*)C^B+A(

Step 2. Make Every '(' as ')' and every ')' as '('

5^E+D*(C^B+A)

Step 3. Convert expression to postfix form.

Recursion and the Runtime Stack

• For method execution, the runtime system creates an activation record
for the parameters and return address.

The record is pushed on a runtime stack when the method is called
and then popped from the stack when the method finishes execution.
The program continues at the return address.

Application 5:

lecture 8: queue

Lecture content:

 Queue Definition

 queue processing

 Building a Queue Class

 Queues in a Computer System

 Implementing a Queue Class

 Queue Structure

 Queue Class Methods

 Fundamental operations

Data Structures and algorithms in Java 48

Queue Definition:

• A queue is a list of items that allows for access only at the
two ends of the sequence, called the front and back of
the queue. An item enters at the back and exits from the
front.

 Queue definition

Queue means ‘waiting line’, which is very similar to queues in real life:-
Such that:

1. a queue of people standing in an airport’s check-in gate;
2. a queue of cars waiting for green light in a road in the city;
3. a queue of customers waiting to be served in a bank’s

counter, etc.

In programming, queue is a data structure that holds elements prior to
processing, similar to queues in real-life scenarios. Let’s consider a
queue holds a list of waiting customers in a bank’s counter. Each
customer is served one after another, follow the order they appear or
registered. The first customer comes is served first, and after him is
the 2nd, the 3rd, and so on.

• When serving a customer is done, he or she lefts
the counter (removed from the queue), and the
next customer is picked to be served next.

• Other customers come later are added to the end
of the queue.

• This processing is called First In First Out or FIFO.

In computer science, a queue is a particular kind of abstract data
type or collection in which the entities in the collection are kept in
order and the principle (or only) operations on the collection are the
addition of entities to the rear terminal position, known as enqueue,
and removal of entities from the front terminal position, known as
dequeue. This makes the queue a First-In-First-Out (FIFO) data
structure.

In a FIFO data structure, the first element added to the queue will be
the first one to be removed.
This is equivalent to the requirement that once a new element is
added, all elements that were added before have to be removed
before the new element can be removed.

Often a peek or front operation is also entered, returning the value of
the front element without dequeuing it. A queue is an example of a
linear data structure, or more abstractly a sequential collection.

 Queue definition cont.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Collection_(abstract_data_type)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/Peek_(data_type_operation)
https://en.wikipedia.org/wiki/Linear_data_structure

Fundamental operations

enqueue(e) Adds element e to the back of
queue.

dequeue() Removes and returns the first
element from the queue (or null
if the queue is empty).

first() Returns the first element of the
queue, without removing it (or
null if the queue is empty).

size() Returns the number of elements
in the queue

isEmpty() Return a boolean if the queue is
empty.

 Characteristics of Queue

Basically, a queue has a head and a tail.
New elements are added to the tail, and to-be-processed elements
are picked from the head.
The following picture illustrates a typical queue:

Elements in the queue are maintained by their insertion

order.

 Characteristics of Queue

Another kind of queue is double ended queue, or deque.

A deque has two heads, allowing elements to be added or

removed from both ends. The following picture illustrates this

kind of queue:

• This queue processing is called First In First Out or FIFO.

• In a FIFO data structure, the first element added to the
queue will be the first one to be removed.

• This is equivalent to the requirement that once a new
element is added, all elements that were added before
have to be removed before the new element can be
removed.

queue processing

Queues in a Computer System

• When a process (program) requires a certain
resource
– printer

– disk access on a network

– characters in a keyboard buffer

• Queue Manipulation Operations
– isEmpty(): returns true or false

– first(): returns copy of value at front

– add(v): adds a new value at rear of queue

– remove(): removes, returns value at front

Implementing a Queue Class

• Implement as a LinkedList attribute value
insertions and deletions from either end are
efficient, occur in constant O(1) time

– good choice

• Implement as an ArrayList attribute

– poor choice

– adding values at one end, removing at other end
require multiple shifts

Implementing a Queue Class

• Build a Queue from scratch

– build a linked structure to store the queue elements

• Attributes required

– handle for the head node

– handle for tail node

– integer to store number of values in the queue

– use SinglyLinkedNode class, source code

Queue Structure

myHead mySize

myTail
n

aQueue

. . .

. . .value0 value1 valuen-1

Queue Class Methods

• Constructor
– set myHead, myTail to null

– set mySize to zero

• isEmpty()

– return results of comparison mySize == 0

• front()

– return myHead.getValue()

// unless empty

Queue Class Methods

• add()

– create new node, update attribute variables

– if queue is empty, must also update myHead

• remove()

– must check if class not empty
otherwise …

– save handle to first object

– adjust head to refer to node

– update mySize

6-65

Front of queue

Adding an
element

New element is
added to the rear
of the queue

6-66

Removing an
element

New front element of queue

Element is
removed from
the front of the
queue

class ArrayQueue
{ private int[] data;

public static final int CAPACITY=1000;
private int f = 0; public int size = 0;
public ArrayQueue()
{ this(CAPACITY); }

public ArrayQueue(int capacity)
{ data = new int[capacity]; }
public boolean isEmpty()
{ return (size == 0); }

Array-Based Queue Implementation:

Enqueue method:
-add a new element to the back of the queue.
-To determine the proper مناسب index at which to
place the new element.

avail = (f + size) % data.length;

public void enqueue(int e)
{

if (size == data.length)
System.out.println("Queue is full");

int avail = (f + size) % data.length;
data[avail] = e;
size ++;

}

public int first()
{

if (isEmpty()) return 0; return data[f];
}

public int dequeue()
{ if (isEmpty()) return 0;

int answer = data[f]; //data[f] = null;
f = (f + 1) % data.length;
size = size -1;
return answer;

}}

public class Qq
{

public static void main(String[] args)
{ ArrayQueue Q1=new ArrayQueue(4);

Q1.enqueue(155); Q1.enqueue(100); Q1.enqueue(123); Q1.enqueue(247);

System.out.println("deleted elem: " + Q1.dequeue());
System.out.println("deleted elem: " + Q1.dequeue());

Q1.enqueue(331); Q1.enqueue(779);

System.out.println("deleted elem: " + Q1.dequeue());
System.out.println("deleted elem: " + Q1.dequeue());
System.out.println("deleted elem: " + Q1.dequeue());
System.out.println("deleted elem: " + Q1.dequeue());

}}

run:
deleted elem: 155
deleted elem: 100
deleted elem: 123
deleted elem: 247
deleted elem: 331
deleted elem: 779

Compare between Stack & Queue ?
QueueStackComparison aspect

Queue uses FIFO (First in
first out)

stack uses LIFO (last in first
out)

Working principle

Queue has both ends open
for enqueuing and
dequeuing the data
elements

Stack has only one end
open for pushing and
popping the data elements

Structure

The queue is a queue for
Theatre tickets where the
person standing in the first
place, i.e., front of the
queue will be served first.

The stack is a stack of CD’s
where you can take out and
put in CD through the top
of the stack of CDs.

example

Two (In simple queue case)OneNumber of pointers used

Enqueue and dequeuePush and PopOperations performed

Front == -1Top == -1Examination of empty
condition

Comparatively complexSimplerImplementation

