
MUTEX
Lab 07

1

2

ًاملع اندزو ،،،انتملع امب انعفناو ،،،انعفنی ام انملع مھللا

Lab Objective
• To practice Mutual Exclusion in threads

using Mutexes.

3

Mutexes
• pthreads includes support for MUTual

Exclusion primitives.
• A mutex is useful for protecting shared

data structures from concurrent
modifications, and implementing critical
sections.

• The idea is to lock the critical section of
the code before accessing global variables
and to unlock as soon as you are done.

4

Mutex Declaration
• A global variable of type
pthread_mutex_t is required and it’s
defined as the following:

5

pthread_mutex_t Count_mutex = PTHREAD_MUTEX_INITIALIZER;

Mutex States
• A mutex has two possible states: unlocked (not

owned by any thread), and locked (owned by one
thread).

• A mutex can never be owned by two different
threads simultaneously.

• A thread attempting to lock a mutex that is
already locked by another thread is suspended
until the owning thread unlocks the mutex first.

• To lock use:

• To unlock use:

6

pthread_mutex_lock(&Count_mutex);

pthread_mutex_unlock(&Count_mutex);

Practice
• In the following program, the main process

creates two threads of the function doit.
• That function has a loop to increment the

global variable counter by 1 for 10 times.
• The mutex is defined in the program but not

utilized around the critical section..
• Write, compile and run the program in Linux

then answer the questions in the check-off
section.

7

Steps
1. Defining and initializing global Mutex

(global)
2. Destroying the Mutex (end of main)
3. Identifying the critical section.
4. Locking the mutex variable (entry

section)
5. Unlocking the mutex variable (exit

section)

Samar Alsaleh

OS - CS242 - Spring 2009
8

9

#include <iostream> #include<stdlib.h> #include<unistd.h>
#include "pthread.h“
using namespace std; //Output a new line
#define NLOOP 10 //Constant value

pthread_mutex_t Count_mutex = PTHREAD_MUTEX_INITIALIZER;

int counter = 0;
void * doit(void *);
int main()
{

pthread_t tidA, tidB, tidC;
pthread_create(&tidA, NULL, doit, NULL);
pthread_create(&tidB, NULL, doit, NULL);
pthread_create(&tidC, NULL, doit, NULL);

pthread_join(tidA, NULL);
pthread_join(tidB, NULL);
pthread_join(tidC, NULL);

//Leaving a mutex without destorying it may affect system
performance

pthread_mutex_destroy(&Count_mutex);
exit(0);

}//end main

Destroying
the Mutex

Defining
and

initializi
ng

global
Mutex

10

void * doit(void *vprt)
{

int i;
for(i = 0; i<NLOOP; i++)
{

cout<<pthread_self()<<”"<<dec<<counter<<endl;
sleep(1);
counter ++;

}
return (NULL);

} //end doit function

Check Off
1) Compile and run the above program as shown then record

the output.
2) Add the required lock and unlock statements around the

critical section. Re-compile and run the program then record
the new results.

3) Explain the difference between both results.

Extra: Change the code so each thread can increment the
global variable once then pass it to the next thread and so
on, the output should be something as the following:

tidA 1
tidB 2
tidA 3
tidB 4 …

11

??? ANY QUESTIONS ???
J

12

