
Introduction
Chapter 1

Scope

 What Operating Systems Do

 Computer-System Organization

 Operating-System Structure

 Operating-System Operations

Objectives

 To provide a grand tour of the major operating systems
components

 To provide coverage of basic computer system organization

Computer
System
Structure

 Computer system can be divided into four components:
 Hardware – provides basic computing resources

 CPU, memory, I/O devices

 Operating system

 Controls and coordinates use of hardware among
various applications and users

 Application programs – define the ways in which the
system resources are used to solve the computing
problems of the users

 Word processors, compilers, web browsers, database
systems, video games

 Users

 People, machines, other computers

Four Components
of a Computer
System

Program Interface

Humans

OS Interface

Hardware Interface/
Privileged Instructions

What is an
Operating
System?

 A program that acts as an intermediary between a user of a
computer and the computer hardware

 OS goals:
 Execute user programs and make solving user problems easier
 Make the computer system convenient to use
 Use the computer hardware in an efficient manner

What
Operating
Systems Do

OS’s viewpoints

User view

varies according to the interface
being used

PC users

Mainframe users

Network
users

System view

the OS is the program most intimately
involved with the hardware

Resource allocator

Control program

Users use PCs:

• Want convenience, ease of
use

• Don’t care about resource
utilization

OS is designed mostly for
with some attention paid to
performance and none paid
To resource utilization

User sits at a terminal connected
to a mainframe or minicomputers:
• Share resources and may

exchange information

OS is designed to maximize
resource utilization,
and keep all users happyUser View

Users set at workstations connected
to networks of other workstations
and servers:
• Have dedicated resources at their

disposal
• Share resources such as

networking and servers-file,

OS is designed to compromise
between individual usability
and resource utilization

In this context,
we can view an
OS as a (OS
Definition):

•Resource allocator:

- A computer system has many resources that
may be required to solve a problem: CPU time,
memory space, file-storage space, I/0 devices,
and so on.

- The OS acts as the manager of these resources

- Decides between conflicting requests for
efficient and fair resource use

•Control program:

- It manages the execution of user programs to
prevent errors and improper use of the computer.

- It is especially concerned with the operation and
control of I/O devices.

System View

OS Definition

 No universally accepted definition

 “Everything a vendor ships when you order an
operating system”

 Good approximation

 But varies wildly (vary greatly across systems)

 Some systems take up less than 1 megabyte of space and lack
even a full-screen editor, others may require gigabytes of
space and are entirely based on graphical windowing systems

 “The one program running at all times on the
computer”, that is the kernel.

 Everything else is either a system program (ships with the
operating system) or an application program (all programs
not associated with the operation of the system)

Computer
Startup

 When the computer is powered up or rebooted, it needs to
have an initial program (bootstrap program) to run.

 Bootstrap program is loaded at power-up or reboot

 Typically stored in ROM (read-only memory) or EEPROM
(electrically erasable programmable read-only memory),
generally known as firmware

 Initializes all aspects of system (from CPU registers to device
controllers to memory contents)

 Loads OS kernel and starts execution

 OS then starts executing the first process, and waits for some
event to occur

 Event is usually signaled by an interrupt from either the
hardware or the software

 Hardware may trigger an interrupt at any time by sending a signal to
the CPU, usually by way of the system bus.

 Software may trigger an interrupt by executing a special operation
called a system call (also, called monitor call)

Computer
System
Organization

 Computer-system operation
 A modern general-purpose computer system consists of:

 One or more CPUs, and a number of device controllers connect
through common bus providing access to shared memory

 Each device controller is in charge of a particular device type

Computer-System Operation

▪ I/O devices and the CPU can execute concurrently

▪ Each device controller is in-charge of a particular device
type

▪ Each device controller has a local buffer

▪ CPU moves data from/to main memory to/from local
buffers

▪ I/O is from the device to local buffer of controller

▪ Device controller informs CPU that it has finished its
operation by causing an interrupt

Common
Functions of
Interrupts

 Interrupt transfers control to the
interrupt service routine
generally, through the interrupt
vector, which contains the
addresses of all the service
routines

https://slideplayer.com/slide/6969422/24/images/17/Table+11-1%3A+Interrupt+Vector+Table+for+the+8051.jpg

Common
Functions of
Interrupts-
cont.

 Interrupt architecture must save the address of the interrupting
instruction

 Incoming interrupts are disabled while another interrupt is being
processed to prevent a lost interrupt

 A trap is a software-generated interrupt caused either by an error or a
user request

 An OS is interrupt driven

 Interrupt driven (hardware and software)
 Hardware interrupt by one of the devices

 Software interrupt (exception or trap):

 Software error (e.g., division by zero)

 Request for OS service

 Other process problems include infinite loop, processes modifying each other
or the operating system

Interrupt
Handling

 The OS preserves the state of the CPU by storing registers and
the program counter

 Determines which type of interrupt has occurred:
 Polling interrupt (Who interrupted me?)

 A specific type of I/O interrupt that notifies the part of
the computer containing the I/O interface that a device is
ready to be read or otherwise handled but does not
indicate which device.

 The interrupt controller must poll (send a signal out to)
each device to determine which one made the request.

 Vectored interrupt system

 An interrupt signal that includes the identity of the
device sending the interrupt signal.

 Separate segments of code determine what action should be
taken for each type of interrupt

Interrupt
Timeline

2- When the CPU is interrupted, it stops
what it is doing and immediately
transfers execution to a fixed
location.

3- The fixed location usually contains the
starting address where the service
routine for the interrupt is located.

4- The interrupt service routine
executes; on completion, the CPU
resumes the interrupted
computation

1- I/O device informs CPU that it
has finished its operation by
causing an interrupt

I/O Structure

 A large portion of OS code is dedicated to managing I/O

I/O Structure-
cont.

 After I/O starts, control returns to user program in two ways:
 Synchronous- Only upon I/O completion

 wait() instruction idles the CPU until the next interrupt

 Wait loop (contention for memory access)

 At most one I/O request is outstanding at a time, no simultaneous
I/O processing

 Asynchronous- Without waiting for I/O completion

 System call – request to the OS to allow user to wait for I/O
completion

 Device-status table contains entry for each I/O device indicating its
type, address, and state

 OS indexes into I/O device table to determine device status and to
modify table entry to include interrupt

Direct Memory
Access
Structure

 Used for high-speed I/O devices
 able to transmit information at close to memory speeds

 Device controller transfers blocks of data from buffer storage
directly to main memory without CPU intervention

 Only one interrupt is generated per block, rather than the one
interrupt per byte

OS Structure

 Multiprogramming (Batch system) needed for
efficiency

 Single user cannot keep CPU and I/O devices
busy at all times

 Multiprogramming organizes jobs (code and
data) so CPU always has one to execute

 A subset of total jobs in system is kept in
memory

 One job selected and run via job scheduling

 When the OS has to wait (for I/O for example), it
switches to another job

 Multiprogramming increases CPU utilization,
but it doesn’t provide for user interaction with
the computer system.

Memory Layout for
Multiprogrammed

System

OS Structure-
cont.

 Multitasking(Timesharing) is logical extension in which CPU

switches jobs so frequently that users can interact with each job
while it is running, creating interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory
process

 If several jobs ready to run at the same time CPU
scheduling

 If processes don’t fit in memory,

swapping moves them in and out to run

 Virtual memory allows execution of

processes not completely in memory

OS Operations

To ensure proper execution of OS operations, we must distinguish between
the execution of OS code and user-defined code

OS has two separate modes:
User mode and kernel mode

Mode bit provided by hardware

Provides ability to distinguish when system is running user code
or kernel code

Some instructions designated as privileged, only executable in
kernel mode

System call changes mode to kernel, return from call resets it to
user

This dual-mode of operation allows OS to protect itself and other system
components

Timer

 We must ensure that the OS maintains control over the CPU.

 Timer is used to prevent infinite loop / process hogging resources
 Set interrupt after specific period

 OS decrements counter

 When counter zero generate an interrupt

 Set up before scheduling process to regain control or terminate
program that exceeds allotted time

OS Functions

End of Chapter 1

 Class Activity
 What are the three main purposes of an operating system?

 We have stressed the need for an OS to make efficient use of
the computing hardware. When is it appropriate for the OS to
forsake this principle and to “waste” resources? Why is such a
system not really wasteful?

 How does the distinction between kernel mode and user mode
function as a rudimentary form of protection (security) system?

