
Threads
Chapter 4

Scope

 Overview

 Multicore Programming

 Multithreading Models

 Operating System Examples

Objectives

 To introduce the notion of a thread—a fundamental unit of CPU
utilization that forms the basis of multithreaded computer
systems

 To cover operating system support for threads in Windows and
Linux

Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by separate
threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Why use threads?
 Process creation is heavy-weight while thread creation is light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

Threads

 A thread is a basic unit of CPU utilization;
 comprises a thread ID, a program counter, a register set, and a stack.

 It shares with other threads belonging to the same process its code
section, data section, and other operating-system resources, such as
open files and signals

 Examples:
 A web browser might have one thread display images or text while

another thread retrieves data from the network

 A web server, where multiple threads works on multiple requests
sent by clients.

Threads

Multithreaded Server Architecture

Benefits

Responsiveness – may allow continued execution if part
of process is blocked, especially important for user
interfaces

Resource Sharing – threads share resources of process,
easier than shared memory or message passing

Economy – cheaper than process creation, thread
switching lower overhead than context switching

Scalability – process can take advantage of
multiprocessor architectures

Multicore
Programming

Multicore or multiprocessor systems putting pressure on
programmers

• Designers of operating systems must write scheduling algorithms that use
multiple processing cores to allow parallel execution

• Challenges include:

• Dividing activities

• Balance

• Data splitting

• Data dependency

• Testing and debugging

Parallelism implies a system can perform more than one task
simultaneously

Concurrency supports more than one task making progress

• Single processor / core, scheduler providing concurrency

Multicore
Programming
(Cont.)

• Data parallelism – distributes subsets of the
same data across multiple cores, same
operation on each

• Task parallelism – distributing threads
across cores, each thread performing
unique operation

Types of parallelism

• CPUs have cores as well as hardware
threads

• Consider Oracle SPARC T4 with 8 cores, and
8 hardware threads per core

As the number of
threads grows, so
does architectural

support for threading

Concurrency
vs. Parallelism

 Concurrent execution on single-core system

 Parallelism on a multi-core system

Single and
Multithreaded
Processes

Thread States

Source: https://www.w3resource.com/java-tutorial/java-threadclass-methods-and-threadstates.php

User Threads
and Kernel
Threads

 User threads –
 Managed by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Windows threads

 Java threads

 Kernel threads –
 Supported by the Kernel

 Examples – virtually all general-purpose operating systems,
including:

 Windows

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X

Multithreading
Models

A relationship must exist between user threads and kernel threads

Three common ways of establishing such a relationship are:

• Many-to-One

• One-to-One

• Many-to-Many

Many-to-One

 Many user-level threads mapped to single kernel thread

 One thread blocking causes all to block
 The entire process will block if a thread makes a

blocking system call

 Multiple threads may not run in parallel on multicore
system because only one may be in kernel at a time

 Few systems currently use this model

 Examples:
 Solaris Green Threads

 GNU Portable Threads

One-to-One
 Each user-level thread maps to kernel thread

 Creating a user-level thread creates a kernel thread

 More concurrency than many-to-one

 Number of threads per process sometimes restricted due
to overhead

 Examples
 Windows

 Linux

 Solaris 9 and later

Many-to-Many

 Allows many user level threads to be mapped to many
kernel threads

 Allows the operating system to create enough kernel
threads

 Solaris prior to version 9

 Windows with the ThreadFiber package

Two-level Model

 Similar to M:M, except that it allows a user thread to be
bound to kernel thread

 Examples
 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

OS Threads
Examples

 Windows Threads

 Linux Threads

Windows
Threads

 Windows implements the Windows API – primary API for Win 98,
Win NT, Win 2000, Win XP, and Win 7

 Implements the one-to-one mapping, kernel-level

 Each thread contains
 A thread id

 Register set representing state of processor

 Separate user and kernel stacks for when thread runs in user mode
or kernel mode

 Private data storage area used by run-time libraries and dynamic
link libraries (DLLs)

 The register set, stacks, and private storage area are known as the
context of the thread

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call
 clone() allows a child task to share the address space of

the parent task (process)

 Flags control behavior

Process vs.Thread

 https://medium.com/@demozeik/quest-02-03-multithreading-in-operating-system-bfa2d2194a83

User-Level vs.
Kernel-Level
Thread

https://medium.com/@demozeik/quest-02-03-multithreading-in-operating-system-bfa2d2194a83

Homework

 Textbook, questions:
 4.1

 4.2

 4.4

 4.6

 4.8

 4.11

 4.15

 The homework will be evaluated next session. Be prepared!

