
Chapter 15: Security

Chapter 15: Security

- The Security Problem
- Program Threats

Objectives

To discuss security threats and attacks

The Security Problem

- System secure if resources used and accessed as intended under all circumstances
 - Unachievable
- Security violations (or misuse) of the system can be
 - intentional (malicious) or
 - accidental
- Easier to protect against accidental than malicious misuse

We should note the following terms:

- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security

Breach of confidentiality

- Unauthorized reading of data (or theft of information)
 - such as credit-card information or identity information
- the goal of an intruder.

Breach of integrity

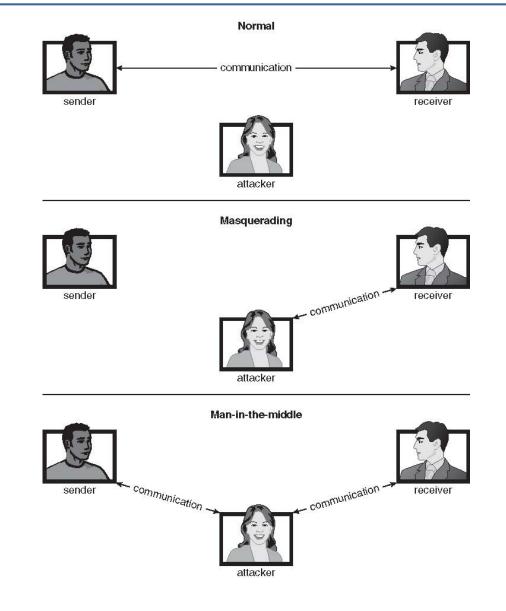
- Unauthorized modification of data
 - such as modification of the source code of an important commercial application.

Breach of availability

- Unauthorized destruction of data
 - such as Website defacement

Theft of service

- Unauthorized use of resources
- Denial of service (DOS)
 - Prevention of legitimate use of the system


Security Violation Methods

- Masquerading (breach authentication)
 - Pretending to be an authorized user to escalate privileges
- Replay attack (repeat of a valid data transmission)
 - As is or with message modification
- Man-in-the-middle attack
 - Intruder sits in the data flow of a communication, masquerading as sender to receiver and vice versa
- Session hijacking
 - Intercept an already-established session to bypass authentication
 - I In a network communication, a man-in-the-middle attack may be preceded by a session hijacking,

Standard Security Attacks

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts – 9th Edition

- Impossible to have absolute security.
- Security must occur at <u>four levels</u> to be effective:
 - Physical
 - Data centers, servers, connected terminals
 - Human
 - Authorization must be done carefully to assure that only appropriate users have access to the system
 - Avoid social engineering, phishing, dumpster diving
 - Operating System
 - must protect itself from accidental or purposeful security breaches.
 - Protection mechanisms, debugging
 - Network
 - Intercepted communications, interruption, DOS
- Security is as weak as the weakest link in the chain
- But can too much security be a problem?

Program Threats

The common methods by which programs cause security breaches (many variations, many names)

Trojan Horse

- Exploits mechanisms for allowing programs written by users to be executed by other users
- Code segment that misuses its environment
- Spyware, pop-up browser windows, covert channels
- Up to 80% of spam messages delivered by spyware-infected systems

Trap Door

- The designer of a program or system might leave a hole in the software that only he/she can use.
- Specific user identifier or password that circumvents normal security procedures
- It could be included in a compiler
- How to detect them? Trap doors pose a difficult problem because, to detect them, we have to analyze all the source code for all components of a system

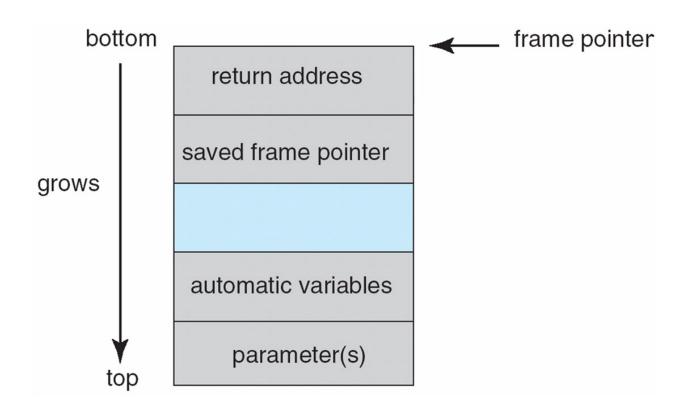
Program Threats (Cont.)

Logic Bomb

• Program that initiates a security incident under certain circumstances (when a predefined set of parameters was met, the security hole would be created)

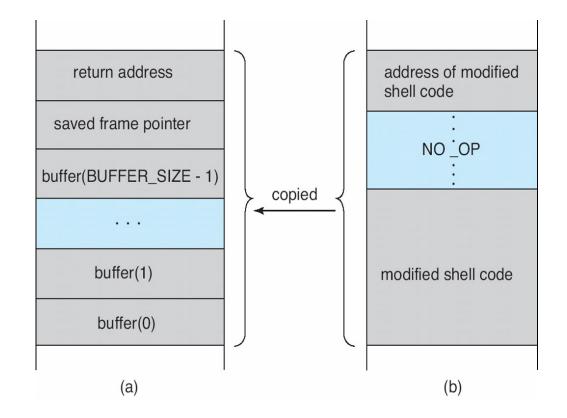
Stack and Buffer Overflow

- Exploits a bug in a program (overflow either the stack or memory buffers)
- Failure to check bounds on inputs, arguments
- Write past arguments on the stack into the return address on stack
- When routine returns from call, returns to hacked address
 - Pointed to code loaded onto stack that executes malicious code
- Unauthorized user or privilege escalation


C Program with Buffer-overflow Condition

```
#include <stdio.h>
#define BUFFER SIZE 256
int main(int argc, char *argv[])
{
  char buffer[BUFFER SIZE];
  if (argc < 2)
       return -1;
  else {
       strcpy(buffer,argv[1]);
       return 0;
  }
```


Layout of Typical Stack Frame


Modified Shell Code

```
#include <stdio.h>
int main(int argc, char *argv[])
{
    execvp(''\bin\sh'', ''\bin \sh'', NULL);
    return 0;
}
```


Hypothetical Stack Frame

Before attack

After attack

Great Programming Skills Required?

- For the first step of determining the bug, and second step of writing exploit code
- Script kiddies can run pre-written exploit code to attack a given system
- Attack code can get a shell with the processes' owner's permissions
 - Or open a network port, delete files, download a program, etc
- Depending on bug, attack can be executed across a network using allowed connections, bypassing firewalls
- One solution to Buffer overflow is for the CPU to have a feature that disallows execution of code in a stack section of memory

or adding bit to page table to indicate "non-executable" state

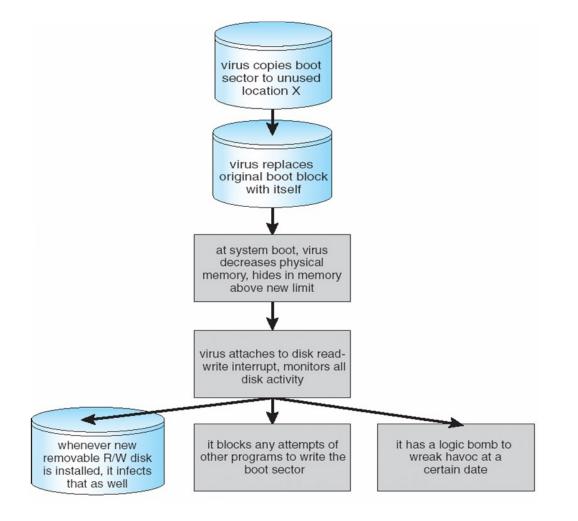
- Available in SPARC and x86
- But still have security exploits

Program Threats (Cont.)

Viruses

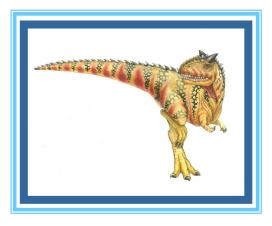
- Code fragment embedded in legitimate program
- Self-replicating, designed to infect other computers
- Very specific to CPU architecture, operating system, and applications
- Usually borne via email, download viral programs from Internet, exchange infected disks, or as a macro
- Visual Basic Macro to reformat hard drive as soon as the file containing the macro was opened:

```
Sub AutoOpen()
Dim oFS
Set oFS = CreateObject('Scripting.FileSystemObject')
vs = Shell('c:command.com /k format c:',vbHide)
End Sub
```



Program Threats (Cont.)

- Once a virus reaches a target machine, a program known as a Virus dropper inserts the virus into the system.
- Many categories of viruses (there are many thousands of viruses)
 - File / parasitic (infects a system by appending itself to a file)
 - Boot / memory (infects the boot sector of the system)
 - Macro (is triggered when a program capable of executing the macro is run)
 - Source code (looks for source code and modifies it to include the virus)
 - Polymorphic (changes each time it is installed to avoid detection by antivirus software by changing virus signature)
 - Encrypted (encrypted virus to avoid detection)
 - Stealth (avoids detection by modifying parts of the system that could be used to detect it)
 - Tunneling
 - Multipartite
 - Armored

A Boot-sector Computer Virus



The Threat Continues

- Attacks still common, still occurring
- Attacks moved over time from science experiments to tools of organized crime
 - Targeting specific companies
 - Creating botnets to use as tool for spam and DDOS delivery
 - Keystroke logger to grab passwords, credit card numbers
- Why is Windows the target for most attacks?
 - Most common
 - Everyone is an administrator
 - Licensing required?
 - Monoculture (in which many systems run the same hardware, operating system, and application software) considered harmful

End of Chapter 15

